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What is Citizen Science?



Directly involving the public in science!

Crowd sourcing: people volunteer their brains to provide or 
analyze scientific data.

Volunteer computing: people volunteer their computers to 
run tasks to solve scientific problems.

What is Citizen Science?



A Case for Volunteer 
Computing



Combined BOINC Statistics

Figures from: http://boincstats.com/stats/project_graph.php?pr=bo&view=hosts

Currently, 285,705 active users are providing around 160,732 TeraFLOPS of 
computing power (as of last night).
Over 3,311,372 users have participated in BOINC.

The worlds fastest supercomputer (top500.org) currently has 3,120,000 
cores and provides 33,862.7 TeraFLOPS. The second has 560,640 cores and 
provides 17,590.0 TeraFlops.

http://boincstats.com/stats/project_graph.php?pr=bo&view=hosts
http://top500.org


Citizen Science Grid Users



Citizen Science Grid Hosts



In the last couple months, ~1000 volunteers have 
volunteered ~2000 computers to participate in 
DNA@Home in our current analysis (more on that in a bit).

The DNA@Home application is available for 32 and 64 bit 
versions of Linux, OS X and Windows.

We are currently gearing up to send out more 
Wildlife@Home work and are developing a new version of 
the SubsetSum@Home application for use on GPUs.

Citizen Science Grid Statistics



What's Volunteer 
Computing Good For?



Volunteered computers can't easily talk to each other (firewalls, 
security, etc), and even if they could the latency is very high.

This limits things to "Bag-of-Tasks" (embarassingly parallel) problems. 

However, some algorithms can fit in this model with some 
modifications, such as numerical optimization (for example 
evolutionary algorithms, below).

Problems like many simulations which require tightly coupled 
communication between processors do not work well.  Luckily, we 
have a cluster for that! (But that's another lecture.)

What's Volunteer Computing Good For?

Travis Desell, David P. Anderson, Malik Magdon-Ismail, Heidi Newberg, Boleslaw Szymanski and Carlos A. Varela. An Analysis 
of Massively Distributed Evolutionary Algorithms. In the Proceedings of the 2010 IEEE Congress on Evolutionary 
Computation (IEEE CEC 2010). pages 1-8. Barcelona, Spain. July 2010. 





DNA@Home
Travis Desell, Archana Dhasarathy & Sergei Nechaev

Departments of Computer Science & Basic 
Sciences (Medical School)

University of North Dakota
http://volunteer.cs.und.edu/csg/dna

E-cadherin protein (stained in red) 
before Snail expression.

E-cadherin protein (stained in red) 
after Snail expression.

http://volunteer.cs.und.edu/csg/dna


DNA@Home

• Find protein binding sites using Gibbs 
sampling

• Use random walks (Markov chains) which 
result in sites distributed according to their 
actual probability of being the correct binding 
site

• Previously analyzed samples from 
Mycobacterium tuberculosis and 
Yersinia pestis.

• Currently analyzing HG19 regions 
related to SNAIL and SLUG 
transcription factors



What is a Binding Site?
Alberts, Johnson, Lewis, Raff, Roberts, & Walter, Molecular Biology of the Cell 4th Edition, 2002

Binding sites are sequences of DNA before a gene that proteins bind to.
Different proteins will cause the gene to either ‘turn on’ or ‘turn off ’.



• Biology is messy -- binding sites are not exact 
sequences.

• Multiple species with the same genes will have 
similar binding sites.

• We need to find ‘motifs’ which have the best 
probability of matching sequences of DNA across 
species.

6/19/20076/19/2007 Lee NewbergLee Newberg 77
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Objective - Regulatory Circuits
Howard-Ashby, Materna, Brown, Tu, Oliveri, Cameron, & Davidson, Dev Biol, 2006

Turning a gene on causes new proteins to be produced, what 
binding sites will that activate?
Turning a gene off stops production of proteins, which other binding 
sites will that activate?



Gibbs sampling is a variant of Markov Chain Monte-Carlo (MCMC) 
sampling. It performs random walks where each step taken must satisfy 
a detailed balance equation:

Where Pi is the probability of state i being a solution, and Pj is the 
probability of state j being a solution. Ri,j and Rj,i are transition probabilities, 
the probability that the state will move from state i to state j and j to i, 
respectively.

To perform Gibbs sampling, it is sufficient to know the relative 
probabilities of Pi and Pj as it may not be possible to calculate their 
exact probabilities.

Gibbs Sampling

Pi ⇤Ri,j = Pj ⇤Rj,i

P1 = .75 P2 = .25

R1,2 = .25

R2,1 = .75

R2,2 = .25R1,1 = .75

A simple set of states and 
their transition probabilities.



Given the detailed balance equation:

We can determine the same transition probabilities if only the relative probabilities of P1 and 
P2 are known:

0.25 * 3 * P2 = 0.75 * P2

If we perform a long enough random walk between the above states 1 and 2, they will be 
sampled according to their actual probability distribution: State 1 will be sampled 3 times as 
much as state 2.

Using gibbs sampling we can find regions of over-represented sequences and calculate their 
probability of being a transcription factor. 

Gibbs Sampling

Pi ⇤Ri,j = Pj ⇤Rj,i

P1 = 3P2 P2 = ?

R1,2 = .25

R2,1 = .75

R2,2 = .25R1,1 = .75



DNA@Home uses 
parallel Gibbs sampling 
walks.

Arrows represent 
workunits, or tasks, 
where hosts receive an 
initial state with depth 
x, Sx, and report a final 
state with depth y, Sy.

Workunits have fixed 
walk lengths (in this 
case 1). When a walk 
completes its burn-in 
period, samples are 
taken.

Processors can join and 
leave, restarting from 
walks of previously left 
processors.

Gibbs Sampling on BOINC
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• A burn-in of 1,000,000 steps and 30,000,000 samples on an average CPU for 
the Mycobacterium tuberculosis data set would take ~2,893 days.

• For 3,000 parallel walks using a burn-in period of 1,000,000 steps, it takes ~7 
days for DNA@Home to accumulate 30,000,000 samples -- a ~400x 
speedup.

• Recent results with HG19, SNAIL and SLUG, gathered using over 2,000 
volunteered computers, are currently being processed for publication.

DNA@Home Results

Further Reading

Travis Desell, Lee A. Newberg, Malik Magdon-Ismail, Boleslaw K. Szymanski and William Thompson. Finding 
Protein Binding Sites Using Volunteer Computing Grids. In the 2011 2nd International Congress on Computer 
Applications and Computational Science (CACS 2011).

http://people.cs.und.edu/~tdesell/papers/2011_cacs.pdf


Wildlife@Home
Travis Desell & Susan Ellis-Felege

Departments of Computer Science & Biology
University of North Dakota

http://volunteer.cs.und.edu/csg/wildlife

http://volunteer.cs.und.edu/csg/wildlife


What is Wildlife@Home?

• A citizen science project that combines both crowd 
sourcing and volunteer computing.

• Users volunteer their brain power by observing 
videos and reporting observations.

• Users volunteer their computer power by 
downloading videos and performing.

• A scientific web portal to robustly analyze and 
compare results from users, experts and the 
computer vision techniques.



Between 2012 and now, Dr. Ellis-Felege has gathered over 100,000 hours of 
avian nesting video from the following species: 

1. Sharp-tailed grouse (Tympanuchus phasianellus), an important game bird 
and wildlife health indicator species.

2. Piping plovers (Charadrius melodus), a federally listed threatened species.
3. Interior least terns (Sternula antillarum), a federally listed endangered 

species.

More video is incoming (ducks!), and we have recently received over 2 
million motion sensor camera images from a new Hudson Bay project.



All three current species are ground nesting birds.

Sharp-tailed grouse nest in the dense grass (top left). Nests were monitored 
in areas of high oil development, moderate oil development and no oil 
development (protected state land).

Piping plover and interior least tern are shore nesting species (top right). 
Nests were monitored along the Missouri River in North Dakota.

Sharp-tailed Grouse Piping Plover



What’s the point?

1. Current cameras that use automated motion 
detection miss some predators and are not 
robust enough).

2. Camera footage allows Dr. Ellis-Felege to manage 
and evaluate studies with large enough sample 
sizes for statistical significance.

3. Answer biological questions about parental 
investment and predator-prey interactions for 
these ground nesting species.

4. Examine the effect of oil development on wildlife 
in western North Dakota, which is experiencing 
a boom in fracking.



Most grouse video is sleeping birds and grass blowing in the wind.  
But occasionally, interesting things happen.



Piping plover and tern video is more interesting, with active bi-
parental involvement and less obscuring vegetation.



There are many challenges:

1. Dramatically changing weather conditions
2. Dawn/Day/Dusk/Night lighting conditions
3. Model species (sharp tailed grouse and piping plover) and 

some predators have cryptic coloration (camouflage).
4. Moving vegetation and insects can cause false negatives.

Figure 2: A piping plover at its nest in high to low light conditions (top), and a sharp-tailed grouse in day,
dusk and night conditions (bottom). Birds are circled in red. Given the cryptic coloration of the bird and
lighting conditions, it can be very difficult to distinguish the bird from a rock, grass or some other object.

nest defense and predation will also need to be detected, from potentially unknown predators. For example,
in previous work by Dr. Ellis-Felege, on two occasions deer were discovered eating eggs from northern
bobwhite (Colinus virginianus) nests [57]. These events of interest must also be differentiated from other
animal activity such as insects and spiders on the camera screen (see Figure 3).

Algorithms capable of detecting events within this type of video will most likely have high computa-
tional demands. Further, we expect to gather about 40,000 hours of video per bird species each nesting
season. In order to accurately train and utilize computer vision algorithms for the analysis of that video,
significant human guidance and observation will be required, in addition to massive amounts of computer
power.

Harnessing Citizen Science Volunteer computing, where people volunteer their computers to differ-
ent computing projects, has emerged as a viable and significant source of computing power being suc-
cessfully used to perform research in scientific applications ranging from astronomy [28, 30, 51], biol-
ogy [48, 102, 94, 12], chemistry [70], and physics [110, 87], to climate modeling [25] as well as many other
fields of enquiry. Berkeley’s Open Infrastructure for Network Computing (BOINC) [6, 7] is the most widely
deployed volunteer computing framework, in part due to its open source code and easy extension. As of
April 2012, over 460,000 volunteered computers are participating in BOINC and contributing over 6.175
petaFLOPS (1015 floating point operations) per second of computing power [16], more powerful than the
world’s second fastest supercomputer [54, 16].

On the other hand, crowd sourcing, where people volunteer their brain power, has been successfully
used by citizen science projects to tackle problems requiring human feedback. GalaxyZoo [86, 85] has had
great success in using volunteers to classify galaxies in images from the Sloan Digital Sky Survey [3]; and
PlanetHunters [63] has been used to identify planet candidates in the NASA Kepler public release data.
However, these focus on volunteers doing identification and classification of images, not video.
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From all this video, we want to determine:

1. Bird Presence

2. Nest Defense

3. Predation Events

4. Nest Success

5. Other events of interest



Analyzing all this video requires both a 
massive amount of computing power as well 
as a massive amount of brain power.

Computer vision techniques will need to be 
run, trained and verified, and updated based 
on human feedback.



Live Demo



A Tale of Two Interfaces



A Tale of Two Interfaces

Originally, Wildlife@Home has a simple interface where users could select yes, no or 
unsure to specify if an event happened at any time during the video.

As we'll see, this simplicity actually had it's costs.



A Tale of Two Interfaces

The interface is significantly more complex, but allows for very accurate specification of 
when events occur and also a direct comparison to what Dr. Ellis-Felege's experts 
report.



A Tale of Two Interfaces

Results gathered over 9 months, from August 2013 to April 2014:

• 206 users provided 261,453 observations for 108,818 video segments (~2.4 views 
to reach a quorum for a video segment)

• 261,453 observations total over 7,411.2 hours of video watched by volunteers. Only 
798 were marked inconclusive, and 15,555 marked invalid.

• In the later months of the original interface, video segments were also generated 
with durations greater than 3 minutes, due to feedback from the users and an 
interest in seeing how well volunteers would perform on longer video segments. 
Additional video segments were generated with 5, 10 and 20 minute durations.

Crowd Sourcing Avian Nesting Video Desell, Goehner, Andes, Eckroad and Ellis-Felege

Duration (s) Completed Observations Valid Invalid Inconvclusive Valid (%)

< 180 89,645 220,320 206,193 13,129 618 93.58
181 . . . 300 8,942 18,715 17,930 649 75 95.80
301 . . . 600 6,446 14,022 12,899 1,033 50 91.99
601 . . . 1200 3,785 8,396 7,569 744 55 90.15

Total 108,818 261,453 244,591 15,555 798 93.55

Table 1: Performance of volunteers based on varying video durations for the original interface.
Duration ranges are in seconds.

This interface allows user to enter any number of events, specify the start and end time of
the event along with comments and tags for further detail. By clicking the discuss button to the
right of an event, a forum post will be generated for the user to allow them to discuss the section
of a video specified by that event in the Wildlife@Home forums with other users and project
experts. Users can also specify how di�cult it was to provide events for that video. When a
user is finished, the interface will provide options for the user to either view the next video from
that nest, or to randomly select a new video. In addition to reducing space requirements, this
new interface also makes direct comparison of volunteer results to those made by the project’s
experts.

4 Results

4.1 Original Interface

Results for the original interface were gathered over a period of 9 months, from August 2013
to April 2014. 206 users provided 261,453 observations for 108,818 video segments, meaning on
average it took approximately 2.4 views to reach a quorum for a video segment. These 261,453
observations total over 7,411.2 hours of video watched by volunteers. Of these observations,
only 798 were marked inconclusive, and 15,555 marked invalid. In the later months of the
original interface, video segments were also generated with durations greater than 3 minutes,
due to feedback from the users and an interest in seeing how well volunteers would perform on
longer video segments. Additional video segments were generated with 5, 10 and 20 minute
durations, and as the original videos did not divide evenly, some segments were of less duration.
Table 1 provides a breakdown of how many segments were watched of each duration, as well
as how many were flagged as valid, invalid or inconclusive. Observations were marked valid
if they were part of the quorum of observations, i.e., if 3 users specified the bird was on the
nest, and 2 did not, the 3 on nest observations were valid and the 2 o↵ nest observations were
invalid. In general, it seems that video segments between three and five minutes provided the
most consensus from users, and longer video segments reduced user consensus.

Of the 108,818 video segments marked by volunteers, 25,549 corresponded to videos that
were marked by the projects experts. Table 2 compare the volunteer’s results to the experts
observations, which were obtained using the new interface. True positives (TP) were when a
quorum of volunteers marked an event as occuring a video segment, and the times of the video
segment overlapped with the time of a similar expert event; false positives (FP) were when the
marked event did not overlap with the time of a similar expert event; true negatives (TN) were
when the event was not marked and an expert did not mark the event during that time; and
false negatives (FN) were when the event was not marked and an expert did mark an event

6



A Tale of Two Interfaces

Of the 108,818 video segments marked by volunteers, 25,549 corresponded to videos 
that were marked by the projects experts. 

•True positives (TP) were when a quorum of volunteers marked an event as 
occuring a video segment, and the times of the video segment overlapped with 
the time of a similar expert event.

•False positives (FP) were when the marked event did not overlap with the time of 
a similar expert event.

•True negatives (TN) were when the event was not marked and an expert did not 
mark the event during that time.

•False negatives (FN) were when the event was not marked and an expert did 
mark an event during that time.

Crowd Sourcing Avian Nesting Video Desell, Goehner, Andes, Eckroad and Ellis-Felege

Event Type Total TP TN FP FN Accuracy (%)

Bird Leave/Return 12501 154 8504 287 3556 69
Bird Presence 21230 9407 1338 9270 1215 51
Bird Absence 9540 1092 4680 2173 1595 61
Predator Presence 414 4 393 11 6 96
Nest Defense 33 0 33 0 0 100
Chick Presence 708 12 418 252 26 61

Table 2: Volunteer event quorums compared to expert events. True positive (TP), true
negative (TN), false positive (FP), false negative (FN), and accuracy (TP+TN

total

) percentages are
given.

during that time. Bird leave and bird return events were unified, as the expert interface had a
single event for a bird being in the video but not on the nest which is what these would match
to. There were not enough nest success events to provide meaningful results.

Using this interface the volunteers provided good results for obvious events such as predator
presence and nest defense (at 96% and 100% accuracy), and decent results for birds leaving
and returning (69%), results for bird presence and absence were poor (51% and 59%), due to
the di�culty of determining the presence of a bird during the short video clips.

4.2 New Interface

Results for the new interface have been gathered over the subsequence period of 9 months,
from April 2014 to January 2015. 150 users provided 25,427 observations for 8,338 full length
videos, with the average video duration being 53 minutes (durations ranged from 1 second
to 11 hours). In total, this was over 49,457.5 days of video watched by volunteers. Of these
observations, 137,895 were marked valid (by being marked by a quorum of volunteers, given a
5 second bu↵er for start and end times), 15739 were marked invalid, and 132 were inconclusive
(either no quorum, or no other matching events).

Of the 8,338 full length videos observed by volunteers, 1,824 had observations from both
a volunteer and an expert. Table 3 displays how well user observations matched to expert
observations for a 5 second bu↵er, with Table 4 shows the same data for a 10 second bu↵er, for
all observations that had more than 10 volunteer entries with corresponding expert observations.
A 5 second bu↵er means that two events would match if they were of the same type and their
start and end times were within 5 seconds of each other, and so on.

The misses column shows how many observations of a particular type could not be matched
to an expert observation with similar start and end times. The type mismatch column shows
how many observations matched an expert observation with similar start and end times, but
a di↵erent event type. The match column shows how many observations fully matched an
expert observation. The improvement in user observations is significant. With even a 5 second
bu↵er, users correctly marking on nest and not in video increased to 85% and 74%, o↵ nest,
which meant that the bird is in the video but not on the nest, was similar at 68%. With a 10
second bu↵er, these increase to 87%, 79% and 73%, respectively. These represent significant
improvements from the old interface for on nest and not in video, without losing accuracy on
o↵ nest, which would correspond to bird leave/bird return from the old interface.

Given these results, the camera interaction events are the most problematic, with many
completely mismarked, and attack and physical inspection events showing significant type mis-
matches. The video error and camera issue events have high type mismatches, and these results
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A Tale of Two Interfaces

Predator presence and nest defense were very accurate, at 96% and 100%.

Bird Leave/Return were fairly accurate at 69%.

Bird absence was not great at 61%.

Bird presence was especially poor at 51% (essentially random guesses). 

There were not enough nest success events for comparison.

Crowd Sourcing Avian Nesting Video Desell, Goehner, Andes, Eckroad and Ellis-Felege

Event Type Total TP TN FP FN Accuracy (%)

Bird Leave/Return 12501 154 8504 287 3556 69
Bird Presence 21230 9407 1338 9270 1215 51
Bird Absence 9540 1092 4680 2173 1595 61
Predator Presence 414 4 393 11 6 96
Nest Defense 33 0 33 0 0 100
Chick Presence 708 12 418 252 26 61

Table 2: Volunteer event quorums compared to expert events. True positive (TP), true
negative (TN), false positive (FP), false negative (FN), and accuracy (TP+TN

total

) percentages are
given.

during that time. Bird leave and bird return events were unified, as the expert interface had a
single event for a bird being in the video but not on the nest which is what these would match
to. There were not enough nest success events to provide meaningful results.

Using this interface the volunteers provided good results for obvious events such as predator
presence and nest defense (at 96% and 100% accuracy), and decent results for birds leaving
and returning (69%), results for bird presence and absence were poor (51% and 59%), due to
the di�culty of determining the presence of a bird during the short video clips.

4.2 New Interface

Results for the new interface have been gathered over the subsequence period of 9 months,
from April 2014 to January 2015. 150 users provided 25,427 observations for 8,338 full length
videos, with the average video duration being 53 minutes (durations ranged from 1 second
to 11 hours). In total, this was over 49,457.5 days of video watched by volunteers. Of these
observations, 137,895 were marked valid (by being marked by a quorum of volunteers, given a
5 second bu↵er for start and end times), 15739 were marked invalid, and 132 were inconclusive
(either no quorum, or no other matching events).

Of the 8,338 full length videos observed by volunteers, 1,824 had observations from both
a volunteer and an expert. Table 3 displays how well user observations matched to expert
observations for a 5 second bu↵er, with Table 4 shows the same data for a 10 second bu↵er, for
all observations that had more than 10 volunteer entries with corresponding expert observations.
A 5 second bu↵er means that two events would match if they were of the same type and their
start and end times were within 5 seconds of each other, and so on.

The misses column shows how many observations of a particular type could not be matched
to an expert observation with similar start and end times. The type mismatch column shows
how many observations matched an expert observation with similar start and end times, but
a di↵erent event type. The match column shows how many observations fully matched an
expert observation. The improvement in user observations is significant. With even a 5 second
bu↵er, users correctly marking on nest and not in video increased to 85% and 74%, o↵ nest,
which meant that the bird is in the video but not on the nest, was similar at 68%. With a 10
second bu↵er, these increase to 87%, 79% and 73%, respectively. These represent significant
improvements from the old interface for on nest and not in video, without losing accuracy on
o↵ nest, which would correspond to bird leave/bird return from the old interface.

Given these results, the camera interaction events are the most problematic, with many
completely mismarked, and attack and physical inspection events showing significant type mis-
matches. The video error and camera issue events have high type mismatches, and these results
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A Tale of Two Interfaces

Crowd Sourcing Avian Nesting Video Desell, Goehner, Andes, Eckroad and Ellis-Felege

Event Misses Type Mismatch Matches

Parent Behavior - Not In Video 221 (0.23) 23 (0.02) 708 (0.74)
Chick Behavior - In Video 13 (0.93) 0 (0.00) 1 (0.07)
Territorial - Predator 8 (0.53) 1 (0.07) 6 (0.40)
Territorial - Non-Predator Animal 14 (0.93) 0 (0.00) 1 (0.07)
Camera Interaction - Attack 12 (0.57) 9 (0.43) 0 (0.00)
Camera Interaction - Physical Inspection 22 (0.55) 7 (0.18) 11 (0.28)
Camera Interaction - Observation 9 (0.64) 3 (0.21) 2 (0.14)
Error - Video Error 12 (0.09) 7 (0.05) 120 (0.86)
Error - Camera Issue 12 (0.09) 47 (0.34) 78 (0.57)
Parent Behavior - On Nest 484 (0.11) 152 (0.04) 3686 (0.85)
Parent Behavior - O↵ Nest 315 (0.31) 16 (0.02) 701 (0.68)

Table 3: With a 5 second bu↵er for matching, how many full misses, type mismatches and full
matches were found for observations with more than 10 volunteer entries that had matching ex-
pert entries. Type mismatches were when a user had matching start and end times, but marked
a di↵erent type of event. Percentages of total events of that type are shown in parenthesis.

Event Misses Type Mismatch Matches
Parent Behavior - Not In Video 177 (0.19) 26 (0.03) 749 (0.79)
Chick Behavior - In Video 13 (0.93) 0 (0.00) 1 (0.07)
Territorial - Predator 8 (0.53) 1 (0.07) 6 (0.40)
Territorial - Non-Predator Animal 13 (0.87) 1 (0.07) 1 (0.07)
Camera Interaction - Attack 10 (0.48) 11 (0.52) 0 (0.00)
Camera Interaction - Physical Inspection 12 (0.30) 14 (0.35) 14 (0.35)
Camera Interaction - Observation 7 (0.50) 4 (0.29) 3 (0.21)
Error - Video Error 12 (0.09) 7 (0.05) 120 (0.86)
Error - Camera Issue 12 (0.09) 47 (0.34) 78 (0.57)
Parent Behavior - On Nest 409 (0.09) 168 (0.04) 3745 (0.87)
Parent Behavior - O↵ Nest 253 (0.25) 29 (0.03) 750 (0.73)

Table 4: With a 10 second bu↵er for matching, how many full misses, type mismatches
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show that the two events should probably be merged as they are similar enough to not matter.
The issues with territorial events need to be addressed by providing more information to the
volunteers and a more in depth examination on a per video basis of why they were mismarked.

There are a few hypothetical reasons for this. First, in a recent survey taken of
Wildlife@Home users, only 38% considered themselves fluent in English. It is possible that
while there are extensive instructions on how to properly mark events, there are not transla-
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rience with them being validated correctly or incorrectly to appropriately learn how to mark
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We also provided a way for users to specify how challenging it was to mark events 
in a video.

Interestingly, those with the highest accuracy had medium difficulty (as opposed to 
easy).

Crowd Sourcing Avian Nesting Video Desell, Goehner, Andes, Eckroad and Ellis-Felege

Easy Medium Hard

Misses 2529 (0.15) 145 (0.14) 90 (0.20)
Type Mismatch 1056 (0.06) 57 (0.05) 24 (0.05)
Matches 13774 (0.79) 863 (0.81) 330 (0.74)

Table 5: How many misses, type mismatches and matches were made by users depending on
how hard they marked the di�culty of determining the observations.

4.3 Reported Di�culty vs. Correctness

Table 5 shows how accurate the volunteers were depending on how di�cult they marked the
video. Interestingly, videos with medium di�culty had the highest accuracy at 81%. Videos
marked as hard had the most misses percentage wise, which is to be expected. However, apart
from easy and hard, there was not much di↵erence in user accuracy depending on how hard they
marked the video. Type mismatches did not seem to have any correlation with user reported
di�culty, which can sense as type mismatches are because of users misunderstanding how to
mark events.

5 Conclusions and Future Work

This paper describes significant improvements to the crowd sourcing interface of Wildlife@Home.
The original interface provided a simple method for users to mark yes, no or unsure for various
events within short clips of video (see Figure 2); while the new interface allows users to watch
full length videos and enter any number of events with specific beginning and ending times, tags
and comments (see Figure 3). This new interface provided a dramatic reduction in the amount
of storage resources required to host the over 85,000 hours of avian nesting video gathered
for the project, as the original interface required the archival video to be converted into short
segments which needed to be in multiple formats for HTML5 video streaming.

Using the original interface, users had significant trouble determining the presence or ab-
sence of a bird in the short video segments, which contained varying weather conditions and
cryptically colored (camouflagued) birds The original interface had an approximately 51% ac-
curacy rate compared to expert observations, which was barely better than guessing. With
the new interface, users ability to determine bird presence at the nest increased from 51% to
87%, bird absence from 61% to 74% and bird presence o↵ the nest from 69% to 73%. While
being able to get significantly better information on many events from the users, this interface
also allowed for a direct comparison of user observations to expert observations and uncovered
potential improvements to be made, especially in the cases of camera interaction events and
video/camera error events. These can potentially be improved by further user education and
the addition of translations as many of our volunteers are not native english speakers.

These results show that it is possible to get accurate results from the public for classifying
challenging video for scientific purposes, with proper education and instruction. While this is
signficiant on its own, and Wildlife@Home’s users are providing valuable information about
avian nesting behavior, this is not the final goal for the project. For future work, we will be
codifying these observations that have also been validated by project scientists and developing
a data set for computer vision researchers. The end goal is to use this information to develop
computer vision algorithms which will be able to automate the arduous task of classifying events
within these videos, or at the very least filter out video where nothing is happening. Lastly,
Wildlife@Home is open source1, and has been developed with the ability easily add additional

1https://github.com/travisdesell/wildlife at home
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Computer Vision Methods:
Motion Detection
Feature Detection

Background Subtraction



Motion Detection

Initial results gathered 
using a method called 
average window differencing.

Each frame (lower left) was 
subtracted from the 
average of +/- 5 seconds of 
frames surrounding it 
(lower right), resulting in a 
measure of motion (upper 
left).

Using this, a likelihood of non-noisy motion was for every segment of video.

This was calculated as the average sum of the RGB pixel values in each difference frame 
divided by the maximum possible difference (3 x width x height x 255).



Motion Detection Results

Results for sharp-tailed grouse.

At time of publication:
188 videos contained active events 
(bird return, bird leave, interesting, 
predator, nest defense)
179 contained no active events (bird 
incubating nest, no bird presence)

Detecting events of interest difficult 
due to weather, wind and vegetation.

Average and median likelihoods:
active: 0.039, 0.035
inactive: 0.030, 0.028



Feature Detection

A feature file was generated by extracting cropped images of birds at their 
nests in different positions.

Features were extracted using SURF for each image, and then these were 
merged, by removing any features within a threshold of each other.

This combined feature file was used to calculate a likelihood of a bird being 
in any segment of video using a bounding rectangle approach.

A rectangle was drawn around all matched features, and the larger the 
rectangle the less likely there was a strong match to a bird.

Where Ra is the average size of each feature bounding rectangle in each 
frame of the video segment, and Rf is the size of the frame:

likelihood = 1 - Ra / Rf



Feature Detection Results

Results for piping plover.

At time of publication:
133 videos contained bird presence
50 contained bird absence

Note: bi-parental investment means 
not as many videos without a bird at 
nest.

Average and median likelihoods:
presence: 0.24, 0.21
absence: 0.20, 0.17



Performance Results

At the time of publication, ~70 users had watched over 8400 three 
minute video segments.
This resulted in ~120 hours of validated observations.

Motion detection was run across the entire video set (~20,000 
hours at publication time) and the application processed video at 
approximately 120 frames per second.  At 10 frames per second, 
this was ~1700 compute hours.

The volunteered hosts processed all videos and returned validated 
results (meaning each video was analyzed by a volunteer at least 
twice) in 4-5 days.



Performance Results

SURF feature detection runs much slower (1.7 frames per 
second).

To run this over the piping plover video (682 hours at time 
of publication), at 10 frames per second or 4000 compute 
hours results were gathered in under a week.

Travis Desell, Robert Bergman, Kyle Goehner, Ronald Marsh, Rebecca VanderClute, and Susan Ellis-
Felege. Wildlife@Home: Combining Crowd Sourcing and Volunteer Computing to Analyze 
Avian Nesting Video. In the 2013 IEEE 9th International Conference on e-Science. Beijing, China. 
October 23-25, 2013. 



Background Subtraction

Foreground pixels are extracted from an input video file using both the Mixture of Gaussians (MOG) and 
ViBe algorithms.
Foreground pixels are counted as a percentage of total pixels.
Spikes are classified as an “interesting” event.

● Red arrows indicate scientist 
classified events (clusters of events).

● Green line indicates pixels marked 
as foreground with ViBe.

● Blue line indicates pixels marked as 
foreground with MOG.



Background Subtraction

● Accuracy is determined by the number of expert classified events that have a corresponding algorithm 
spike.
○ 10 seconds in either direction

● Algorithm accuracy for this video
○ ViBe: 96%
○ MOG: 54%

● Quick lighting changes remain an issue
○ Camera brightness adjustment
○ Overhead shadows created by clouds



What's Next?



What's Next?

Convolutional Neural Networks for animal and event detection on 
Wildlife@Home. 

Analysis of the Hudson Bay imagery.

Aviation@Home - data mining the National General Aviation Flight 
Database to improve general aviation safety. (Jim Higgins & Brandon 
Wild, Aviation)

ClimateTweets - crowd sourcing the analysis of tweets involving 
climate change (Andrei Kirilenko, Earth System Science and Policy).

And I'm always open to new collaborations!
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