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Abstract—This article describes several properties of the
random problem space for the Subset Sum problem, derived
both empirically and analytically. Empirical results support the
conjecture that Subset Sum instances always have a solution
when the input set S is a set of n elements with a maximum
value of m, the target sum t is between m and the sum of the
smallest n � 1 elements of S, and n > bm/2c + 1. While the
proof of this conjecture remains an open problem, exhaustive
enumeration of problem instances has resulted in no counter-
examples for values of m  49. Sequential processing was used
to generate the empirical data for values up to m = 40. The
SubsetSum@Home volunteer computing project reproduced the
results of the sequential code and extended the enumeration
beyond m = 49.

I. A REVIEW OF THE SUBSET SUM AND PARTITION
PROBLEMS

Subset Sum is a well-known NP-complete problem [18]
that can be defined as follows: given a set of positive integers
S and a target sum t, determine whether some subset of
S has sum t. The Partition problem, determining whether
a set of numbers can be partitioned into two subsets that
have the same sum, is also NP-complete. It can be defined
to be a special case of Subset Sum. For any set of natural
numbers S, let ⌃S represent the sum of all elements of S. We
define the Partition problem as follows: given a set of positive
integers S, determine whether S has a subset with sum ⌃S/2.
The definitions above prohibit duplicate values in the set S.
Variations on these definitions can be found in the research
literature. Here we prefer the simplest possible definitions of
the problems that remain NP-complete. In discussing Subset
Sum or Partition, we will denote the size of the input set S as n
and the maximum value in S as m, and given our assumption
that S does not contain duplicates, we have n  m.

Exact algorithms for Subset Sum can be designed to search
the space of all possible subsets or the space of all possible
sums. Variants of backtracking and branch-and-bound are
usually employed for enumerating subsets. These algorithms
typically have worst-case time complexity O(2

n
), since the

set S has 2

n subsets. Variants of dynamic programming are
more appropriate for enumerating possible sums. Horowitz and
Sahni provided a survey of these approaches for Subset Sum
and 0/1 Knapsack in [17]. Their list-based sum enumeration
algorithm remains a standard with worst-case time complexity
O(2

n/2
). Enumeration of all subset sums is a staightforward

application of dynamic programming. For an input set S, no
subset sum can exceed ⌃S < n · m. We use an array called

summap of at most ⌃S bits, initially all zeros. If some subset
of S generates sum i, we set summap[i] = 1. Using this
data structure, dynamic programming can be simply coded as
a sequence of bitwise shift and or operations. Pseudo-code can
be found in Figure 1. The algorithm has pseudo-polynomial
time complexity O(m · n2

). This complexity may still be
exponential in n, depending on the relationship between n and
m.

If we use n and m as parameters to define the problem
space of random instances for Subset Sum, we find that the
performance of an algorithm may be very sensitive to the ratio
n/m, which we will define to be the density of the input
set. Combinatorial decision problems frequently have critical
regions where the hardest instances reside. The critical region
in a problem space is normally defined to be the region just
below and above a crossover point, where random instances
have a 50% chance of having a solution. And in the critical
region, the probability of finding a solution changes rapidly
from close to 0 (the overconstrained side of the crossover
point) to almost 1 (the underconstrained side). We expect that
a backtracking algorithm with appropriate bounding conditions
will show the highest step counts for problems in the critical
region. Studies of the critical region for the Partition problem
began to appear in about 1996 (e.g. [16]). Crossover was
predicted to occur at m = 2

n, or n = lg m. S. Mertens [22,
p. 5] published a more refined model a few years later. His
analysis parameterized the average bit length b of the numbers
in the set and predicted crossover when b was about equal to
the size of the set n. For m = 100000, this model predicts
crossover at n = lg m/.923.

The current upper bound on the complexity of exact algo-
rithms for the Subset Sum problem using n as the complexity
parameter is apparently O(n2

n/2
) [17]. The hardness of a

Subset Sum instance, however, is highly dependent on the
density of the input set. For very dense instances, where
m = O(n), a dynamic programming algorithm operates in

BitMap function findSums(set S)
// computes all sums of subsets of S

1) BitMap summap: summap[0] ( 1

2) for each num in S from high to low
3) BitMap newmap ( summap >> num;
4) summap ( summap or newmap;
5) return summap;

Fig. 1. A dynamic programming algorithm for Subset Sum



polynomial time. Chaimovich, Frieman, and Galil [6] define an
algorithm that has time complexity O(m2/n2

+n lg n), which
is better than dynamic programming’s O(m ·n2

). The theorem
can apparently be applied for any problem instances where
m  nc where c is a constant. In [14], similar methods are
applied to achieve an improved algorithm with time complexity
O(m lg m). A few more recent articles describe specialized
algorithms designed for high, medium, or low density instances
of the Random Modular Subset Sum problem (RMSS), which
has applications in cryptology. In these papers, density is more
likely to be defined as the ratio of n to lg m. The input is a
set of n numbers with maximum value less than a modulus
m and a target sum t, and the task is to find a subset that
has sum t(mod m). An expected polynomial-time algorithm
can be found in [13] for so-called medium-density instances,
where lg m falls between lg n and (lg n)

2. In [21], a RMSS
algorithm is given that has complexity 2

O( n✏

log n ) for instances
with m = 2

n✏

for arbitrarily small constants 0 < ✏ < 1. This is
better than dynamic programming, which would yield 2

O(n✏)

at this density.

If we use the total bit length x of the input as the com-
plexity parameter instead of the number of elements n, we can
find algorithms with strongly subexponential time complexity
(2O(xc) for a constant c < 1). Stearns and Hunt [29] defined
such an algorithm for Partition with time complexity 2

O(
p

x).
Their algorithm divides the input set into lower and upper
subsets, applies dynamic programming to the lower subset
and backtracking to the upper subset. O’Neil and Kerlin [26]
showed that a variant of dynamic programming called DDP
can also achieve this result for Subset Sum without explicitly
splitting the input list and without using backtracking. DDP has
a strongly sub-exponential time complexity of O(x3 · 2

p
x
).

II. A DENSITY-BASED DECISION THRESHOLD

As mentioned in the previous section, the problem space
for many combinatorial problems contains a critical region, an
underconstrained region, and an overconstrained region. It is
also possible that a solution is guaranteed in some subrange
of the unconstrained region, and that a solution is impossible
in some subrange of the overconstrained region. Knowledge
of these thresholds can be translated to heuristics that make
decision algorithms more efficient. A small-scale empirical
study of Subset Sum was conducted in [24] to search for a
density threshold beyond which solutions are guaranteed to be
achievable. The results indicated a distinct density threshold,
formally described in the conjecture below.

Definition 2.1: Let S be a set of natural numbers with
maximum element m, that is, S ✓ {1, . . . ,m}. We call a
sum t central with respect to S if m < t < ⌃S �m.

Conjecture 2.1 (The Decision Threshold Conjecture): Let
S be a subset of {1, 2, . . . ,m}. If |S| > bm/2c+ 1, then for
every m  t  ⌃S �m, some subset of S has sum t.

Continuing empirical work to test the conjecture has grown
into the SubsetSum@Home project, which is briefly summa-
rized in [25] and described in detail in the sections below. As
discussed in [25], proof of the conjecture would rigorously
establish that the Subset Sum problem has strongly sub-
exponential time complexity (2O(

p
x) where x is the length of

the input) even under symmetric represenation schemes. The

empirical analysis has shown that most randomly generated
problem instances well below the threshold (but still outside
the critical region) have no missing central sums. There are,
however, some interesting special cases that have missing
central sums just below the threshold. If all numbers in a set
are even, for example, the set size can reach m/2 and still not
produce any odd sums. We can also find a set of size m/2+1

that has missing central sums. This result is described as a
theorem in [25]:

Theorem 2.2: For every m � 4, there is a subset S of
{1, 2, . . . ,m} such that |S| = bm/2c+ 1 and no subset of S
has sum m + 2.

Proof: Let S = {1, dm/2e + 1, dm/2e + 2, . . . ,m}. We
observe that there is a gap in the sums of two-element subsets
of S. The largest sum of a 2-element subset that contains 1
is m + 1, and the next larger subset has sum dm/2e + 1 +

dm/2e+ 2. So whether m is even or odd, no subset has sum
m + 2.

It is interesting to note that if any additional number is
added to the set in the proof of Theorem 2.2, every central sum
is produced by some subset. This does not prove Conjecture
2.1, but it does establish a lower bound for the decision
threshold. The proof of Conjecture 2.1 remains elusive. The
research literature contains a density-based threshold theorem
for subset sums, but it is not a strong as the conjecture above.
The previously mentioned algorithms from [6] and [14] use a
theorem from [1]. The theorem establishes that as the density
of a set S grows, a cluster of subset sums will form in the sum
set around and including 1

2⌃S. The width of the sum cluster,
however, is 2m log m, which is not wide enough to include
the entire central region of conjecture 2.1.

III. THE EMPIRICAL STUDY

The empirical study to provide support for Conjecture
2.1 has been conducted in two phases. The first phase uses
a sequential Java program called SumFinder, adapted from
the visualization program for Subset Sum instances described
in [24]. The code that is applied to individual instances is
an implementation of the dynamic programming logic from
Figure 1 above. Java’s BigInteger type, which provides built-
in shift and or methods, is used as the data structure for
summap. A BitGenerator class is used to generate problem
instances. Each instance is a subset of {1, . . . ,m}. These sets
are represented as bit maps of length m, and the BitGenerator
has methods that iterate all bit strings of length m containing
n ones in lexicographic order (as illustrated in [19], p. 17).

Various properties of the sum sets can be exploited to
reduce the amount of work required for the exhaustive enu-
meration of problem instances and sum sets. The following
definitions introduce some terminology to facilitate the dis-
cussion.

Definition 3.1: For a set of natural numbers S, let
sums(S) represent the set of all sums of subsets of S.

Definition 3.2: The set sums(S) has a complete central
region if |S| > 2 and sums(S) contains all central sums of
subsets of S.



First we note that the sum sets for all problem instances are
symmetric. This can save time in the enumeration of sums(S)
for a single problem instance.

Theorem 3.1: The Subset Sum problem is symmetric
around ⌃S/2. Specifically, S has a subset with sum t if and
only if S has a subset with sum ⌃S � t.

Proof: If S1 ✓ S has sum t, then its complement S2 =

S � S1 has sum ⌃S � ⌃S1 = ⌃S � t.

It is also useful to observe that as numbers are processed
by the DP algorithm from high to low, if the central region of
the sum set becomes complete, it remains complete until all
remaining numbers are processed. This property is formalized
and proven in the lemma below.

Lemma 3.2: Consider S = {a1, a2, . . . , an}, a subset of
{1, 2, . . . ,m} where an = m, n � bm/2c + 2, and the
elements of S are enumerated in increasing order, so that
ai < ai+1 for 1  i  n � 1. Let Si represent the subset of
S containing the largest i elements, Si = {an�i+1, . . . , an}.
If sums(Sk) has a complete central region where k � 4, then
for all k  j  n, sums(Sj) has a complete central region.

Proof: We can develop the proof in the context of the DP
algorithm of Figure 2, which computes sums(Si) in the ith

iteration of its for loop. In the ith iteration, a new sum set
is computed by adding an�i+1 to all sums in sums(Si�1).
Then sums(Si) is set to be the union of the new sum set and
sums(Si�1). If sums(Si�1) has a complete central region,
then the new sum set will contain a complete sequence of sums
from m + an�i+1 to ⌃Si�1 �m + an�i+1. If Si�1 has more
than three elements, then it contains the three largest elements
an�2, an�1, and m, and since n � bm/2c+ 2, it must be the
case that an�2 + an�1 � m. it follows that m + an�i+1 
⌃Si�1 � m, so that the new sum sequence will overlap the
end of the previous sum set’s central region, thus extending the
central region for sums(Si) from m to ⌃Si�1�m+an�i+1 =

⌃Si �m without introducing any gaps in the sequence.

Lemma 3.2 can be used to formulate a more specific
version of Conjecture 2.1, whose testing in the empirical study
will be sufficient to confirm the more general version.

Conjecture 3.3 (The Sufficient Threshold Conjecture):
Let S be a subset of {1, 2, . . . ,m}. If S contains m and
|S| = bm/2c+ 2, then for every m <= t <= ⌃S �m, some
subset of S has sum t.

Theorem 3.4: If Conjecture 3.3 is true, then the following
propositions also hold:

1) Let S be a subset of {1, 2, . . . ,m} that contains m.
If |S| � bm/2c+ 2, then for every t such that m 
t  ⌃S �m, some subset of S has sum t.

2) Let S be a subset of {1, 2, . . . ,m} that does not
contain m. If |S| � bm/2c + 2, then for every
m  t  ⌃S �m, some subset of S has sum t.

Proof: Proposition (1) is equivalent to Conjecture 3.3
when |S| = n = bm/2c + 2. Suppose we have Sn =

{a1, a2, . . . , an} where an = m and n > bm/2c + 2, and
the elements of Sn are enumerated in increasing order, so that
ai < ai+1 for 1  i  n � 1. Consider the subset Sn�h

formed by removing the smallest h elements from Sn, where

h > 0 is chosen to make n � h = bm/2c + 2. According to
Conjecture 3.3, Sn�h generates all sums t in the central region
m <= t <= ⌃Sn�h�m. We can assume that n�h � 4, since
otherwise the constraint n�h = bm/2c+2 cannot be satisfied
with h > 0 and n  m. This allows us to invoke Lemma
3.2 on S. Since Sn�h generates a complete central region
and n � h � 4, the extension of sums(Sn�h) to sums(Sn)

maintains a complete central region.

For proposition (2), we have S a subset of {1, 2, . . . ,m}
that does not contain m and |S| � bm/2c + 2. We can also
characterize S as a subset of {1, 2, . . . ,m0}, where m0 is the
largest number in S. Since m0 < m, we have |S| > bm0/2c+2

and we can apply Proposition 1 to get a complete sum range
m0  t  ⌃S � m0, which includes the complete subrange
m  t  ⌃S �m.

Corollary 3.5: If Conjecture 3.3 is true, so is Conjecture
2.1.

So the empirical study can be restricted to verification of
Conjecture 3.3, reducing the number of sets that need to be
tested. Only sets containing m need to be tested, and sets with
density higher than the threshold do not need to be tested.
Lemma 3.2 can also be used to justify early exit from the for
loop in the DP algorithm for individual problem instances. The
DP logic can be modified to return true as soon as a complete
central region is detected in the sum set, even if all numbers
in the input set have not yet been processed. This strategy
was implemented in an alternative version of the SumFinder
program mentioned above. The new version, however, actually
took more time than the old. The average number of loop
iterations per instance was reduced from n to about .7n, but the
test for gaps in the central region was executed for each loop
iteration, instead of once after the last iteration. The overhead
of a linear scan of the sum list per iteration outweighs the
savings in a reduced number of iterations. If the test for gaps
could be conducted in connection with the shift operation, with
only a constant additional cost, the new version would be faster
than the old.

The first phase of the empirical study tested all problem
instances with maximum value m and size bm/2c + 1 for
values of m up to and including 40. At m = 40, the running
time was about two weeks. This sounds like a long time for
a relatively small value of m, but it needs to be borne in
mind that there are

�40
22

�
= 113, 380, 261, 800 distinct sets with

maximum value 40 and size 22.

IV. THE SUBSETSUM@HOME VOLUNTEER COMPUTING
PROJECT

To extend the empirical evidence to significantly higher
values of m, it was necessary to apply parallel and distributed
processing. All problem instances relevant to the conjecture
are very dense and so far the instance sizes are relatively
small. The DP algorithm is efficient for such instances, so
there was no need to parallelize the DP algorithm. Translation
from Java to optimized C code provided a constant speed-up
(by a factor of about ten) for individual instances, but beyond
this, no attempt was made to develop a parallel version of DP.

The greatest potential for speed-up is to divide the space
of problem instances into work packets that can be computed



in parallel by participating processors. Instances can be tested
independently, and the order of testing does not matter, so the
overhead is limited to dividing the problem space, checking
the results, and assembling the results. Redundancy is used
to reduce the probability of malicious or erroneous results.
Each instance is sent to different computers with different
owners, amd the results are checked for consistency. If two
results for the same work packet agree, they are accepted.
Otherwise, the work packet is sent out again to two more
different participants.

A. Volunteer Computing

Volunteer computing, where people volunteer their idle
compute cycles to different computing projects, has emerged as
a viable and significant source of computing power. It is being
successfully used to perform research in scientific applications
ranging from astronomy [8], [10], biology [11], [27], [23], [4],
chemistry [15], and physics [28], [20], to climate modeling [7]
as well as many other fields of inquiry. Berkeley’s Open
Infrastructure for Network Computing (BOINC) [2], [3] is the
most widely deployed volunteer computing framework, in part
due to its open source code and easy extension. As of February
2014, over 400,000 volunteered computers are participating in
BOINC and contributing over 8.1 petaFLOPS (10

15 floating
point operations) per second of computing power [5], more
powerful than many supercomputers [12]. Because of its easy
extensibility and large user base, BOINC was chosen as the
framework to implement the SubsetSum@Home project.

B. SubsetSum@Home

As of February 2014, SubsetSum@Home1 has had 4,504
compute hosts participate in the project, volunteered by 1,229
users. The SubsetSum@Home source code is open source,
hosted on GitHub2, and the progress of all the

�
m
n

�
subsets

tested, along with every failed set are publicly available3.
The original SubsetSum@Home application has evaluated all
problem instances with n = bm/2c+1 and n = bm/2c+2 for
m  49, reaching the limits of what the client application can
calculate without using multiprecision variables to perform the
SubsetSum calculation.

A new SubsetSum@Home application is currently under
development that uses the Boost C++ Libraries’ [9] multi-
precision integer class. The switch to multiprecision integers
initially resulted in a 50-100x degradation in performance
on standard processors. Because of this a GPU application
is being developed to handle larger sized problem sets in
a reasonable amount of time. Due to the inherently parallel
nature of the problem, significant performance improvement
is expected with a GPU implementation.

V. CONCLUSION

The theorems of the preceding sections, together with ver-
ification of the code used for the empirical testing, provide the
basis for a proof that Conjecture 2.1 is valid for n < 50. While
the SubsetSum@Home project cannot prove the conjecture
for all n, it can potentially provide a counter example that

1http://volunteer.cs.und.edu/subset sum
2https://github.com/travisdesell/Subset-Sum/
3http://volunteer.cs.und.edu/subset sum/progress/index.php

disproves the conjecture. It can also provide data that may
eventually lead to a proof of the general conjecture. The results
for problem instances just below the threshold, for example,
are informative. For even m and n = bm/2c+ 1, the number
of instances that exhibit missing central sums is exactly two,
while the number of failed instances for odd m shows at least
polynomial growth. The authors hope that further study of
these and other phenomena will eventually lead to a rigorous
proof of what remains, for now, an open problem.
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