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Abstract. This work provides an extensive analysis of flight parameter estima-
tion using various neural networks trained by differential evolution, consisting
of 12,000 parallel optimization runs. The neural networks were trained on data
recorded during student flights stored in the National General Aviation Flight
Database (NGAFID), and as such consist of noisy, realistic general aviation flight
data. Our results show that while backpropagation via gradient and conjugate
gradient descent is insufficient to train the neural networks, differential evolution
can provide strong predictors of certain flight parameters (10% over a baseline
prediction for airspeed and 70% for altitude), given the four input parameters
of airspeed, altitude, pitch and roll. Mean average error ranged between 0.08%
for altitude to 2% for roll. Cross validation of the best neural networks indicate
that the trained neural networks have predictive power. Further, they have po-
tential to act as overall descriptors of the flights and can potentially be used to
detect anomalous flights, even determining which flight parameters are causing
the anomaly. These initial results provide a step towards providing effective pre-
dictors of general aviation flight behavior, which can be used to develop warning
and predictive maintenance systems, reducing accident rates and saving lives.
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works, Flight Prediction, Aviation Informatics

1 Motivation

General aviation comprises 63% of all civil aviation activity in the United States; cov-
ering operation of all non-scheduled and non-military aircraft [12,24]. While general
aviation is a valuable and lucrative industry, it has the highest accident rates within civil
aviation [21]. For many years, the general aviation accident and fatality rates have hov-
ered around 7 and 1.3 per 100,000 flight hours, respectively [1]. The general aviation
community and its aircraft are very diverse, limiting the utility of the traditional flight
data monitoring (FDM) approach used by commercial airlines.

The National General Aviation Flight Information Database (NGAFID) has been
developed at the University of North Dakota as a central repository for general aviation
flight data. It consists of per-second flight data recorder (FDR) data from three fleets
of aircraft. As of January 2014, the database stores FDR readings from over 208,000



flights, with more being added daily. It currently stores almost 400 million per-second
records of flight data. The NGAFID provides an invaluable source of information about
general aviation flights, as most of these flights are from aviation students, where there
is a wider variance in flight parameters than what may normally be expected within data
from professionally piloted flights.

This research presents initial work done using data from the NGAFID for the pre-
diction of flight data parameters. Five flights were selected from the NGAFID, and a
rigorous examination of training the weights to various neural networks using back-
propagation and differential evolution [23] was performed. Backpropagation is shown
to be insufficient to train the neural networks. 12,000 runs of parallel differential evo-
lution with various search parameters were executed on a high performance computing
cluster, testing 15 different neural network designs. The results show that it is possible to
have significant improvement over a baseline random noise estimator for airspeed and
altitude. The best neural networks were cross-validated on flights they were not trained
on, showing predictive ability and the potential to detect anomalous flights. These re-
sults provide a first step towards accurate prediction of FDR parameters, which could
not only warn pilots of problematic flight behavior, but also be used to predict impend-
ing failures of engines and other hardware. This has the potential to reduce costs for
maintaining general aviation fleets, and more importantly save lives.

2 Time-Series Prediction

Neural networks have been widely used for time series data prediction [7, 29], however
to the authors’ knowledge, this is the first attempt to utilize them in predicting general
aviation flight parameters. Our approach is similar to Khashei et al. [16] and Omer et
al. [22], who utilize residuals, or lags, from linear data as additional inputs to the neural
network. A significant difference is that this work uses multiple streams of input time-
series data (airspeed, altitude, pitch and roll) to predict future values of each of those
parameters; instead of prediction on single parameter time series data. This allows us to
exploit dependencies between the input parameters.

2.1 Neural Network Design

Feed forward, Jordan and Elman networks were examined, each with 0, 1 and 2 lay-
ers of lag variables (as used in ARIMA time series models [28]); and O and 1 hidden
layers, except for the ElIman networks which require at least 1 hidden layer. The neural
networks were used to predict one of the four input parameters, with examples shown
in Figure 1. All the networks were fully connected between layers. The lag layers were
added as additional input nodes to the neural network (one lag layer would add four ad-
ditional input nodes, and two lag layers would add eight). The first order lag variables
(A) are the difference between the current and previous timestep, e.g.:

Ai(Airspeed) = Airspeed, — Airspeed;_q (1)

where ¢ is the current timestep and ¢ — 1 is the previous timestep. The second order
lag variables (A?) are the difference between the current and previous first order lag
variables, e.g.:

A2(Airspeed) = Ay (Airspeed) — Ay (Airspeed) (2)



The following naming scheme was used to describe the various neural networks:
network_type/l(lag_layers)/h(hidden _layers). In the following scheme, ff//1/hI would
describe a feed forward network, with one lag layer and one hidden layer; while jor-
dan/12/h0 would describe a Jordan network with two lag layers (the first order lag vari-
ables and the second order lag variables) and no hidden nodes.
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Fig. 1. Feed Forward (A), Jordan (B) and Elman (C) networks with a hidden layer and single out-
put node. These networks were trained separately for each of the four possible outputs: airspeed,
altitude, pitch and roll.

2.2 Objective Function

The neural networks were designed to predict the next second of flight data given the
previous second of flight data and the first and second order lags variables, if used. To
determine the optimal weights for the neural networks, the following objective function
was used for both backpropagation and differential evolution:
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Where f(w) is the objective function evaluated over the weights w. With I; being
the input at timestep ¢, the absolute difference between the output predicted by the neu-
ral network, nn(. . .)output, and that value at the next time step, I; 41 output, is calculated
over every per second data reading (0...n — 1), given the input parameters, and input
lags if used (I, A, AZ). This was then divided by the number of comparisons, n — 1.
This produces the mean absolute error (MAE) for the target output for the entire flight.
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2.3 Neural Network Bounds and Data Cleansing

The flight data required some cleaning for use, as it is stored as raw data from the
flight data recorders uploaded to the NGAFID server and entered in the database as
per second data. When a FDR turns on, some of the sensors are still calibrating or not
immediately online, so the first minute of flight data can have missing and erroneous
values. These initial recordings were removed from the data the neural networks were
trained on. Further, the parameters had wide ranges and different units, e.g., pitch and
roll were in degrees, altitude was in meters and airspeed was in knots. These were all
normalized to values between 0 and 1, where 0 was the minimum value recorded and 1
was the maximum value recorded for each parameter to remove bias.

Additionally, the recurrent neural networks needed to be bounded. The flights con-
sisted of between 5412 and 5941 per second recordings (over an hour and a half of per
second data). This led to a problem where poor weights to the recurrent layer resulted
in the fitness growing beyond the bounds of double precision. To alleviate this problem,
the values for the recurrent nodes were bounded between -2 and 3 which eliminated
overflow errors. Lastly, the weights for the neural networks were all bounded between
-1.5 and 1.5 to limit the search space of the evolutionary algorithms and initial values
for backpropagation.

3 Parallel Evolutionary Algorithms

A wide range of evolutionary algorithms have been examined for different distributed
computing environments. Generally, these fall into three categories: single population
(panmictic, coarse-grained); multi-population (island, medium-grained); or cellular (fine-
grained); as classified by Cantu-Paz [6]. These various approachs have different effects
on the explorative and exploitative properties of the evolutionary algorithms [26], with
smaller subpopulations allowing faster exploitation of their search subspaces.

Given the scale of the data in the NGAFID, and the potential complexity of examin-
ing complex neural networks over per-second flight data, a package requiring easy use
of high performance computing resources was required. While there exist some stan-
dardized evolutionary algorithms packages [2, 5,27, 17], as well as those found in the R
programming language [20, 3] and MATLAB [18], they do not easily lend themselves
towards use in high performance computing environments.

This work utilizes the Toolkit for Asynchronous Optimization (TAO), which is used
by the MilkyWay @Home volunteer computing to perform massively distributed evo-
lutionary algorithms on tens of thousands of volunteered hosts [10, 11, 8]. It is imple-
mented in C and MPI, allowing easy use on clusters and supercomputers, and also pro-
vides support for systems with multiple graphical processing units. Further, TAO has
shown that performing evolutionary algorithms asynchronously can provide significant
improvements to performance and scalability over iterative approaches [25, 9]. Its code
is also open source and freely available on GitHub, allowing easy use and extensibility>.

3 https://github.com/travisdesell/tao



4 Results

4.1 Runtime Environment

All results were gathered using a Beowulf HPC cluster with 32 dual quad-core compute
nodes (for a total of 256 processing cores). Each compute node has 64GBs of 1600MHz
RAM, two mirrored RAID 146GB 15K RPM SAS drives, two quad-core E5-2643 In-
tel processors which operate at 3.3Ghz, and run the Red Hat Enterprise Linux (RHEL)
6.2 operating system. All 32 nodes within the cluster are linked by a private 56 giga-
bit (Gb) InfiniBand (IB) FDR 1-to-1 network. The code was compiled and run using
MVAPICH2-x [13], to allow highly optimized use of this network infrastructure.

Each run of a differential evolution/neural network combination was submitted as
a single job, allocating 32 processes across 4 nodes, with 1 master process to han-
dle generating new individuals and updating the population, and 31 to handle the ob-
jective function calculations. The asynchronous differential evolution implementation
from TAO was used to perform this optimization.

The results for optimizing all combinations of the neural networks and input param-
eters to differential evolution required 12000 jobs, approximately 4,800 hours of single
CPU compute time. These jobs had a minimum runtime of 2.3 seconds, a maximum
runtime of 278 seconds and an average runtime of 45.1 seconds. As such, utilizing par-
allel differential evolution on a HPC system enabled running these jobs in a reasonable
amount of time, taking approximately a week given shared resources with other users
of the cluster.

4.2 Evaluation Metrics

A random noise estimator (RNE), which uses the previous value as the prediction for
the next value, prediction(t;+1) = t;, was chosen as a baseline comparison, as it rep-
resents the best predictive power that can be achieved for random time series data. If the
neural networks did not improve on this, then the results would have been meaningless
and potentially indicate that the data is too noisy (given weather and other conditions)
for prediction. Additionally, it provides a good baseline in that it is easy for neural net-
works to represent the RNE: all weights can be set to 0, except for a single path from
the path from the corresponding input node to the output node having weights of 1.
Because of this, it also provides a good test of the correctness of the global optimiza-
tion techniques, at the very least they should be able to train a network as effective as a
RNE; however local optimization techniques (such as backpropagation) may not reach
this if the search area is non-convex and the initial starting point does not lead to a good
minimum.

4.3 Infeasibility of Backpropagation

Backpropagation was evaluated using both stochastic gradient descent (GD) and con-
jugate gradient descent (CGD) on flight 13588. Stochastic GD and CGD were run 20
different times for the networks described in Section 2. Figure 2 presents the range
of fitnesses found for each backpropagation and network combination. In all cases,
stochastic GD and CGD performed worse than RNE, demonstrating the challenging
and non-convex nature of this search area. Accuracy further decreased and became



more variable as neural networks became more complicated. Stochastic GD and CGD
performed similarly for altitude, pitch, and roll.

Backpropagation was also evaluated using GD and CGD starting from a neural net-
work which simulates a RNE, to address the case of all the initial starting positions
of stochastic GD and CGD being poor. However, even the neural networks represent-
ing RNE for each network type were close to a local minima. Using backpropagation
starting from a RNE, Airspeed was only improved upon at best by 0.018%, altitude im-
proved on by 0.5%, pitch improved on by 0.025%, and roll improved upon by 0.022%.
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Fig. 2. Histograms for the estimation of airspeed for flight 13588 using backpropagation via gra-
dient descent (GD) and conjugate gradient descent (CGD). The dashed line shows the baseline

estimation for random noise, using the value at timestep ¢; as the prediction for the value at
timestep ti+1.

4.4 Neural Network Optimization

Given previous experience training these neural networks, and in order to perform the
analysis of more types of neural networks, we limited the differential evolution options
to de/best/3/bin and de/rand/3/bin (differential evolution with best or random parent
selection, 3 pairs, and binary recombiation — for a detailed descripton of differential
evolution variants see [19]), with a population size of 500; as these settings had been
shown to provide good convergence rates and effective solutions in the past.

Five flights (13588, 15438, 17269, 175755 and 24335) were used for analysis, and
neural networks were trained to predict each of the four flight data parameters (airspeed,
altitude, pitch and roll) used as input. Each differential evolution strategy and neural
network combination was run 20 times, for a total of 12000 runs (2 DE strategies x
15 neural networks x 4 output parameters x 5 flights x 20 runs each). The parallel
differential evolution was terminated after 15,000,000 total objective functions had been
evaluated, or the best fitness in the population had not improved after 1,000 generations.

Table 1 show rankings for the different neural networks in terms of how well they
predicted the given output. The ranks are what order the network came in, in terms of
prediction; i.e., a | means the neural network gave the best fitness for one of the flights, a
2 means it gave the second best fitness, and so on. Ties (in some cases multiple networks
had the same best fitness) were given the same rank, so in some cases there are more
than 5 of each rank. The rank column provides the average rank the network came in

across all flights, and the avg. evals column gives the average number of evaluations it
took for the differential evolution to terminate.



Airspeed Pitch
[Network ]Rimk[ Ranks[Avg. Eva]s] [Nelwork ]Rank] Ranks[Avg. Evals]
elman/i0/h1] 19.9110, 16, 17, 17, 19, 20, 23, 25, 26, 26| 2667750 elman/i0/h1| 13.0] 6,10, 10, 12,12, 12, 12, 16, 20, 20| 3543250
elman/il/hl | 14.0| 4,10, 11,12, 13,16, 18, 18, 19, 19| 3334000 elman/il/hl | 11.6] 1,10, 10, 11,11, 11, 13, 14, 16, 19| 4104750

elman/i2/hl| 6.7 1,3,3,4,5,6,7,9,14, 15| 4225500 elman/i2/h1| 6.2 1,1,2,2,3,7,8,9, 11, 18| 4793500
/10/h0 22.6|21, 21, 22,22, 23, 23, 23, 23, 24, 24 830000 /i0/h0 23.8(23, 23, 23, 23, 24, 24, 24, 24, 25, 25 905000
ff/i0/h1 24.1(22,23,23,24,24,24,25,25,25,26 1050000 ff/i0/h1 25.3(24, 24,25, 25, 25, 25, 26, 26, 26, 27| 1105000
f/i1/h0 13.0(11, 11, 12, 12,13, 13, 14, 14, 15, 15| 1515000 {f/i1/h0 16.4|15, 15,15, 15,17, 17,17, 17,18, 18| 1200000
ff/il/h1 14.5112, 13,13, 14, 14, 15, 15, 16, 16, 17| 1720000 ff/il/h1 17.916, 16,17, 17, 18, 18, 19, 19,19, 20| 1675000
£/i2/h0 6.6 5,5,5,6,6,6,8,8,89] 2615000 f/i2/h0 5.2 3,3,5,5,6,6,6,6,6,6/ 2595000
f/i2/h1 8.3 6,7,7,7,8,8,9,10,10, 11| 2225000 ff/i2/h1 5.4 1,2,4,5,5,7,7,7,8, 8| 2045000

jordan/i0/hO| 19.8119, 19, 19, 19, 20, 20, 20, 20, 21, 21| 1573750 jordan/i0/h0| 20.7|20, 20, 20, 20, 21, 21, 21, 21, 21, 22| 1372500
ordan/i0O/h1| 21.9(20, 20, 21, 21, 21, 22, 22, 22, 24, 26| 2551750 jordan/i0/h1| 22.3|21, 21, 22,22, 22,22, 23, 23,23, 24| 2449750

ordan/il/h0| 5.0 2,2,3,3,3,3,5,6,11, 12| 6897750 jordan/il/h0| 12.5| 9,10, 12, 12,13, 13, 13, 14, 14, 15| 4874750

ordan/il/hl| 15.5| 9,13, 14, 15, 16, 17, 17, 18, 18, 18| 3712000 jordan/il/hl| 15.4|13, 13, 14, 14, 15, 15, 16, 17, 18, 19| 3640000

jordan/i2/h0| 1.6 1,1,1,1,1,2,2,2,2,3]| 11695500 jordan/i2/h0| 3.1 1,2,2,3,3,3,4,4,4,5[ 9692500

jordan/i2/h1| 7.4 4,4,4,5,7,8,9,10, 11, 12 5078750 jordan/i2/h1| 7.6 4,5,6,7,8,8,9,9,9, 11| 5269750
Altitude Roll

[Network — TRank] Ranks[Avg. Evals| [Network  [Rank] Ranks[Avg. Evals|

elman/i0/hl | 22.4|20, 21, 21, 22, 22, 22, 23, 23,24, 26| 2629000 elman/i0/hl| 18.3| 4,16, 17,17, 18, 19, 21, 23, 24, 24| 3096000
elman/il/hl] 16.6[11,13,13,13,16, 17,17, 17, 24,25 3704000 elman/il/hl | 13.7] 1,2,14,15,16, 16,17, 18, 18,20] 3882500

elman/i2/hl | 16.2]12, 12,13, 13, 15, 16, 18, 19, 19, 25| 4583750 elman/i2/hl| 5.0 1,1,1,1,2,2,3,9,14, 16| 4707750
f/i0/h0 20.4(18, 18, 19, 19, 20, 20, 21, 21, 24, 24 780000 {/i0/h0 23.8(22,22,23,23,24, 24,25, 25, 25,25 710000
/i0/h1 21.7[19, 19, 20, 20, 21, 22, 22, 23, 25, 26| 1205000 ff/i0/h1 25.3|23, 24, 24, 25, 25, 26, 26, 26, 27, 27| 1090000
f/i1/h0 8.6 7,7,8,8,8,38,10,10,10, 10| 1635000 ff/i1/h0 11.6| 88, 11,11, 11,11,13,13,15,15| 1435000
ff/il/h1 10.0 8,9,9,9,9,10, 11, 11, 12, 12| 1705000 ff/il/h1 13.1] 9,10, 12,12, 13,13, 14, 15, 16, 17| 1655000
{f/i2/h0 32 2,2,3,3,3,3,4,4,4,4] 2060000 {f/i2/h0 5.4 4,4,4,4,5,6,6,6,7,8| 2355000
ff/i2/h1 4.2 3,3,4,4,4,4,4,5,5,6[ 2335000 ff/i2/h1 7.2 5,5,6,6,7,7,8,9,9,10] 2375000

jordan/i0/hO| 17.1115, 16, 16, 16, 16, 16, 17, 18,20, 21| 1153500 jordan/i0/h0| 19.7[18, 18, 19, 19, 20, 20, 20, 21, 21, 21| 1522500
jordan/iO/h1| 15.9(14, 14, 14, 15, 15, 15,17, 18, 18, 19| 2425500 jordan/iO/h1| 21.5(19, 20, 21, 21, 22, 22,22, 22,23, 23| 2387500

ordan/il/h0| 6.6 6,6,6,6,6,6,7,7,8,8] 4860500 jordan/i1/h0] 10.0 7,7,9,10,10, 10, 10, 10, 13, 14| 3954750
ordan/il/h1| 10.7 7,9,9,10,10, 11, 11, 12, 14, 14| 4421750 jordan/il/hl| 14.5|11, 11,12, 13,14, 15, 15,17, 18, 19| 3740750
ordan/i2/h0| 1.3 1,1,1,1,1,1,1,2,2,2| 11706250 jordan/i2/h0| 3.3 2,2,2,3,3,3,3,4,5,6/ 6838000
jordan/i2/h1| 5.1 2,3,3,5,5,5,6,7,7,8| 6343750 jordan/i2/h1| 7.7 3,4,5,7,7,8,8,11,12, 12| 5292750

Table 1. Neural Network Rankings

These results show that there is no clear cut best neural network for prediction of all
these flight parameters. However, the Jordan and Elman networks tend to outperform
the feed forward neural networks; and in most cases adding input lags improves the
predictive ability of the network. Except in the case of the Elman networks, adding
a hidden layer does not seem to provide much benefit (perhaps due to the increased
difficulty of optimization). Generally speaking, it seems that Jordan networks (with 2
input lags and no hidden layer) perform the best for predicting altitude and airspeed,
while Elman networks (with 2 input lags and 1 hidden layer) perform the best for pitch
and roll. Also worth noting is that when the Jordan networks perform the best, they take
significantly longer to converge to a solution. Given this, it may be the case that the
Elman networks are either converging prematurely or getting stuck. This question does
beg further examination, as the more complicated neural networks should theoretically
be able to provide more predictive power.

4.5 Cross Validation

In order to gauge the predictive power of the trained neural networks, the best found
neural networks for each flight and output parameter were cross validated against the
other flights. In Table 2, each row shows the best found neural network for each flight.
The first row shows the random noise estimation (RNE), for baseline comparison. Each
column in that row shows the mean absolute error (MAE) for the neural network trained
for the flight specified flight against all the other flights. The bold values show the MAE
where the input flight was the flight compared against; while italicized values show
where the neural network performed worse than the RNE.



These results show that the trained neural networks have predictive parameters of
other flights. They also show a dramatic difference in predictive ability for the differ-
ent output parameters. Excluding the neural networks trained on flight 17269, predicted
airspeed showed a 10-12% improvement over RNE, altitude showed near 70% improve-
ment, while pitch and roll were much lower at 5-7% and 0.5-3%, respectively. Most of
the trained neural networks were able to improve over RNE for all the other flights that
they were not trained on. Further, the predictions are fairly accurate. As the input and
output parameters were normalized between 0 and 1, the mean average error is also
the average percentage error for the prediction. Airspeed predictions were around 0.6%
error, altitude predictions were around 0.08% error, pitch was around 1.5% error, and
roll was around 2% error.

These results lead to some interesting findings: first, the four parameters used (alti-
tude, airspeed, pitch and roll) are probably not sufficient for prediction of pitch and roll,
however they do provide good inputs for predicting airspeed and especially altitude. Us-
ing additional input parameters should allow better prediction for these values. Second,
using this cross validation it appears that flight 17269 is an outlier, especially in pitch,
as it was 50% worse than RNE in predicting pitch from the other flights. These find-
ings present the possibility that it may be possible to determine atypical flights utilizing
trained neural networks and potentially identify problematic parameters.

Airspeed
[ Method [13588 [15438 [17269 [175755 [24335 [Improvement |
tig1 = t; 0.00512158  [0.00316859  [0.00675531  [0.00508229  |0.00575537 |0.0

13588 |elman/i2/h1 [0.00472131  [0.00250284  [0.00656991  [0.00465581 0.00495454  [10.78%
15438 |jordan/i2/h0{0.00500836  [0.00218919  |0.0067222 0.00480868  |0.00498588 10.47%
17269 |jordan/i2/h0(0.00513133  |0.0027844 0.00620534  0.00505878  |0.00552826  |4.90%
175755]jordan/i2/h0{0.0047884 0.00240848  0.00643301 0.00459774  |0.00498664 11.63%
24335]jordan/i2/h0{0.00487011 0.00226412  10.00666179  {0.00471104  [0.00485888 11.54%

Altitude
[ Method [ 13588 [ 15438 [ 17269 [ 175755 [24335 [Improvemem ]

tiy1 =t 0.00138854  10.00107117  |0.00200011 0.00137109  10.00192345 0.0
13588 |jordan/i2/h0{0.000367535 |0.000305193 0.000895711 |0.000399587 |0.000485329 (69.18%
15438 |jordan/i2/h0{0.000394097 [0.000263834 |0.000837357 |0.0004203 0.00048358  [69.87%
17269 |jordan/i2/h0{0.000702832 {0.000765161 {0.000801323 |0.000694245 [0.000846411 [48.65%

175755|jordan/i2/h0{0.00037486 ~ {0.0003003 0.000883877 0.000390743 |0.00048446  [69.42%
24335 |jordan/i2/h0]0.000380966 |0.000281196 |0.000906039 ]0.000404582 |0.000468267 [69.43%

Pitch
[ Method __ [13588 [15438 [17269 [175755 [24335 [Tmprovement_|
tiri=t; _ [00153181 _ [0.010955 00148046 [0.0161251 _ [0.0173269 __ [0.0
13588 [clman/il/n1 [0.014918 __ [0.0100763 __|0.0147712___|0.01514 00160249 |4.90%
15438 [jordan/i2/h0[0.0163609 __ [0.00881572_[0.0159061 __ |0.0150275 __[0.015552 __|447%
17269 |elman/i2/h1[0.0199653 __ [0.0249748 __[0.0142671 __|0.0199625 __|0.0291537 __|-49.24%
175755 [fA2/] __ [0.0133644 __|0.00917981 _|0.0148751 __ [0.0145228 __ |0.0153566 _ |7:35%
24335 clman/i2/n1 |0.0157302___|0.00011826 _ [0.0160297 __|0.014868 ___|0.0149484 __|5.47%
Roll
[ Method _ [13588 [15438 [17269 [175755 [24335 [Tmprovement
fii1=1t;  [0.0158853 _ [0.00604479 [0.0204441 _ [0.012877 __ [0.0192648 _ [0.0

13588|elman/i2/h1{0.0154541 0.00587058  10.0206536 0.0127999 0.0182611 2.08%
15438 |elman/i2/h1{0.0164341 0.00544584  |0.0217141 0.0129252 0.0176981 1.60%
17269 |elman/i1/h1{0.0157483 0.00613587  |0.0201234 0.0129124 0.0184769 0.95%
175755 |elman/i2/h1{0.0156503 0.00573676  |0.0205158 0.0125207 0.017983 3.13%
24335 [elman/i2/h1{0.0163245 0.00578885  [0.0215668 0.0131439 0.0174324 0.68%

Table 2. Cross Validation for All Flight Parameters and Flights



5 Conclusions and Future Work

This work provides an extensive analysis of flight parameter estimation using various
neural networks and input parameters to differential evolution. The neural networks
were trained on data recorded during actual student flights, and consist of noisy, real-
istic general aviation flight data. Results show that while backpropagation is unable to
provide much improvement over a random noise estimator (RNE), parallel differential
evolution can provide strong predictions of airspeed (10% better than RNE) and alti-
tude (70% better than RNE). These results were also fairly accurate, ranging between
0.08% accuracy for altitude to 2% accuracy for roll. Cross validation indicate that the
trained neural networks have predictive ability, as well as the potential to act as overall
descriptors of the flights. The trained neural networks could be used to detect anoma-
lous flights, and even determine which flight parameters are causing the anomaly (e.g.,
pitch in flight 17269).

For future work, how well the neural networks can be trained using particle swarm
optimization [15] is of particular interest; as well as using autoencoders and other deep
learning strategies [4], or hybrid strategies with genetic algorithms or ant colony op-
timization to evolve the structure of more complicated neural networks. Performing a
grid search over potential evolutionary algorithm parameters is also suboptimal, which
can be improved on by using hyperparameter optimization [14] or other metaheuristics.
Further, training the neural networks over groups of flights could potentially improve
their overall predictive ability as well as minimize overtraining.

The National General Aviation Flight Database (NGAFID) provides an excellent
data source for researching evolutionary algorithms, machine learning and data mining.
Further analysis of these flights along with more advanced prediction methods will en-
able more advanced flight sensors, which could prevent accidents and save lives; which
is especially important in the field of general aviation as it is has the highest accident
rates within civil aviation [21]. As many of these flights also contain per-second data of
various engine parameters, using similar predictive methods it may become possible to
detect engine and other hardware failures, aiding in the maintenance process. This work
presents an initial step towards making general aviation safer through machine learning
and evolutionary algorithms.
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