
A Robust Asynchronous Newton Method for
Massive Scale Computing Systems

Travis Desell∗, Malik Magdon-Ismail†, Heidi Newberg‡, Lee Newberg†, Boleslaw Szymanski† and Carlos Varela†
∗Department of Computer Science

University of North Dakota, Grand Forks, ND 58203
Email: tdesell@cs.und.edu

†Department of Computer Science, ‡Department of Physics, Applied Physics and Astronomy
Rensselaer Polytechnic Institute, Troy, NY 12180

Email: [magdon,leen,szymansk,cvarela]@cs.rpi.edu, heidi@rpi.edu

Abstract—Volunteer computing grids offer supercomputing

levels of computing power at the relatively low cost of operating

a server. In previous work, the authors have shown that it is pos-

sible to take traditionally iterative evolutionary algorithms and

execute them on volunteer computing grids by performing them

asynchronously. The asynchronous implementations dramatically

increase scalability and decrease the time taken to converge to

a solution. Iterative and asynchronous optimization algorithms

implemented using MPI on clusters and supercomputers, and

BOINC on volunteer computing grids have been packaged

together in a framework for generic distributed optimization

(FGDO). This paper presents a new extension to FGDO for

an asynchronous Newton method (ANM) for local optimization.

ANM is resilient to heterogeneous, faulty and unreliable com-

puting nodes and is extremely scalable. Preliminary results show

that it can converge to a local optimum in significantly fewer

iterations than conjugate gradient descent.

I. INTRODUCTION

Volunteer computing grids can offer significant levels of
computing power at very low costs. As an added benefit, many
volunteers continually upgrade their hardware, so computing
power of a volunteer computing project increases over time,
while at best a supercomputer stays the same. However,
utilizing these extremely large scale systems involves sig-
nificant challenges in overcoming heterogeneous, faulty and
even malicious hosts. The computations performed are also
usually limited embarrassingly parallel bag-of-tasks type work.
In many cases, effectively utilizing a volunteer computing
system requires rethinking the algorithms involved.

In previous work, the authors have shown that asynchronous
versions of evolutionary algorithms can be effectively run on
volunteer computing systems, such as MilkyWay@Home [1].
While evolutionary algorithms can effectively find global (or
near global) solutions to difficult computational problems with
many local optima, they are not nearly as efficient as local
optimization methods in more well behaved search spaces with
a single optimum. Additionally, after finding the general area
of the global optimium, they may then take a very long time
to converge to the solution.

This work explores an asynchronous version of the Newton
method, which has traditionally been avoided in smaller scale
computing systems. By using regression to calculate the search
direction and then using a randomized line search, it is

possible to perform an efficient local optimization method on
a large scale computing system. The asynchronous Newton
method (ANM) presented is extremely scalable and tolerant
to heterogeneous, faulty hosts. As part of FGDO, it also
uses BOINC [2] to validate results from volunteers, providing
protection from malicious hosts. Preliminary results show that
it converges to a solution in significantly less iterations than
conjugate gradient descent and can scale to a massive scale
computing system like MilkyWay@Home which currently
consists of around 35,000 volunteered hosts1.

II. ITERATIVE LOCAL OPTIMIZATION

In traditional local optimization scenarios, conjugate gra-
dient descent (CGD) [3] or quasi-Newton (QN) methods [4]
are typically favored over a standard Newton method, as they
require fewer function evaluations to converge to the local
optimum. Both types of methods start at a point, �x, in the
parameter space. For each iteration, both the CGD and QN
methods will then calculate a precise approximation of the
gradient, �, of the function f at point �x. The i

th value of the
gradient vector, �f(�x)i is:

�f(�x)i =
f(�x+ �s

0
i )− f(�x− �s

0
i )

2si
(1)

where �s
0
i is a vector of all zeros, except with a user defined

step size si > 0 as the i
th element. For example, given a

uniform step vector of length n+ 1, �si=0..n = 0.1, s02 would
be [0, 0, 0.1, 0, .., 0]. CGD will use this gradient to update a
stored conjugate gradient, while QN methods use the gradient
to refine their approximation of a Hessian matrix (the second-
order partial derivatives of a function).

Following the calculation of the gradient, a direction, �d, for
a line search is chosen (starting at �x). CGD uses the conjugate
gradient as the direction, while QN methods use the inverse
of the approximate Hessian multiplied by the gradient. It is
also possible to perform an inexact line search using Wolfe
conditions [5], which compute an acceptable step length to
multiply the direction by to choose the next point, �xnext.
Following the exact or inexact line search, the next iteration
will begin using �xnext as the initial point.

1http://boincstats.com



In a standard Newton method, a precise approximation of
the Hessian matrix is calculated in a similar manner to the
gradient, also using the user defined step vector, �s. The value
of the Hessian matrix at row i and column j of function f at
point �x is:

H(f(�x))i,j =
1

4sisj
[f(�x+ �s

0
i + �s

0
j )− f(�x− �s

0
i + �s

0
j )

−f(�x+ �s
0
i − �s

0
j ) + f(�x− �s

0
i − �s

0
j )] (2)

Then the direction, �d, for the line search is calculated as:

�d = −H(f(�x))−1 � f(�x) (3)

As with CGD and QN methods, the line search is used to
calculate xnext and the process repeats until the optimization
process cannot progress any further.

From Equation (1), the calculation of a gradient for CGD
or a QN method only requires 2n function evaluations, where
n is the number of parameters. However, from Equation (2)
an numerical calculation of the Hessian requires 4n2 function
evaluations, which can be slightly reduced to 4n2 − n by
avoiding a function evaluation on the diagonal. Numerically
calculating the Hessian provides the most accurate approxi-
mation for calculating the line search direction, which results
in less overall iterations of the optimization method. However,
given the drastic increase in function calculations required to
numerically calculate the Hessian, it is easy to see why the
standard Newton method is usually avoided for optimization.

III. AN ASYNCHRONOUS NEWTON METHOD

However, it is possible to calculate the Hessian as well as
the gradient using regression instead of numerically. In a large
scale computing system, and even more so in a heterogeneous
and faulty computing system such as BOINC, using regression
provides many advantages over an numerical calculation. In
the numerical calculation, if any one of the processes fails
in calculating its function evaluation, the entire computation
stalls until that function evaluation is calculated by a new
node. Further, the numerical calculation only scales to 4n2−n

concurrent function evaluations, and CGD and QN methods
have even less scalability, only 2n function evaluations. Using
the regression method, it is possible to obtain a more accurate
Hessian by using additional points in its calculation, which
can be especially beneficial if the user defined step vector, �s,
is not well specified.

Using regression, it is possible to calculate the gradient
and Hessian as follows. First, function evaluations must be
performed for a random set of m points, xi=0..m−1. These are
calculated around the initial point, �x�, using the user defined
step vector, �x

� ± �s. These points are then used to create a
vector of function evaluation results, �y, where �yi = f(�xi), as
well as an initial matrix X using the different points used in
calculating �y. Where n is the number of parameters in the

search space, row i and column j of X are:

Xi,0 = 1

Xi,1..n = �x
i
j , j = 0..n− 1

Xi,n+1..2n =
1

2
�x
i
j�x

i
j , j = 0..n− 1

Xi,2n+1..n2+n = �x
i
j�x

i
k, j = 0..n− 1, k = j + 1..n− 1

A vector containing the gradient and the Hessian, �B can be
calculated as follows:

�B = (XT
X)−1

X
T
y (4)

Then the gradient and Hessian are:

�i = �Bi+1, i = 0..n− 1 (5)
Hi,i = �Bn+i+1, i = 0..n− 1 (6)
Hi,j = �B2n+1+ni+j , i = 0..n− 1, j = i+ 1..n− 1 (7)
Hj,i = Hi,j (8)

In Equation (4), the matrix X must be at least a square
matrix, so the number of function evaluations required to do
the regression calculation is at least n

2 + n. Because these
points are all randomly generated, it is possible on BOINC
to send out a large number of random points and then gather
results of the function evaluations as they are reported. When
enough results have been gathered, the regression can be
performed and the gradient and Hessian from Equations (5) -
(8) can be used to calculate the direction for a line search
using Equation (3).

IV. AN ASYNCHRONOUS LINE SEARCH

Calculating the gradient and Hessian with the above meth-
ods provides varying amounts of scalability, with the asyn-
chronous method providing the most scalability. However,
most line search methods, such as a logarithmic line search
or Brent’s method [6], are inherently sequential, only able
perform one function evaluation at a time because future func-
tion evaluations require the fitness evaluation of the previous
function evaluation(s). In the case of MilkyWay@Home, a
single function evaluation can take a day or longer, having
any client or the server perform the line search would severely
degrade the performance of the optimization method. Even
worse, on volunteer computing systems there is no guarantee
that a client will ever return a result, so having this kind of
dependency is infeasible.

A randomized line search can be used to determine the
area where the next set of random points for the gradient and
Hessian calculation are selected. A randomized line search is
extremely simple, selecting random points, �xrandom, within
the bounds of the search space and a user specified optimum
bound, αmin, and maximum bound, αmax. For each iteration,
αmin and αmax are also bounded by the user specified borders
of the search space, bmin and bmax. They are increased or
decreased so no point along the directional line could be
outside the search space. These random points are selected
along the direction calculated by Equation (3), where r is



Fig. 1. The BOINC architecture consists of multiple server-side daemons
which handle work generation, validation and scheduling of tasks, or worku-

nits, to clients.

a random number between zero (inclusive) and one (non-
inclusive), and �x

� is the center of the previous regression:

�xrandom = �x
� + αmin

�d+ r(αmax − αmin)�d (9)

This randomized line search can also be performed asyn-
chronously. As clients request work, more random points
can be generated without any dependencies on other points
previously sent out for the line search. When a sufficient
number of results have been reported, we can select the best
point and use that as the center of the next Hessian and
gradient calculation.

While this approach is quite simple, this method has some
significant benefits in that there are no explicit dependencies
that would make heterogeneous function evaluation time or
the failure of any client problematic. It is also very scalable,
increasing the number of random points increases the accuracy
of the line search. Further, it is possible to escape from
local optima using this randomized approach (as shown in
Section VI), which is not possible using traditional iterative
line search methods, which only find the nearest optimum.

V. IMPLEMENTATION

ANM and the randomized line search was implemented in
FGDO for use on BOINC. FGDO provides a specialized com-
bination of BOINC’s assimilator, validator and work generator
daemons, because in asynchronous optimization methods, the
workunits generated depend on up-to-date results that have
been received from clients which are processed by the assim-
ilator. Further, in asynchronous optimization the number of
workunits that require validation can be even further reduced
by only validating results that will be used to generate new
workunits [7].

Using FGDO, ANM works as follows. First, the user selects
the initial central point �x and step vector �s. Workunits are
generated around the current point and sent out to volunteers.
When a user specified number of function evaluations were

Fig. 2. The progress of ANM performing parameter optimization on two
datasets from the SDSS, showing the best and average fitness from the
randomized line search of each iteration.

calculated and validated by the BOINC clients, they are used
to perform the regression. Then for the randomized line search,
workunits are generated on a line along the direction calculated
by the regression and sent out to volunteers. After a user
specified number of function evaluations are calculated and
validated, the result with the best fitness is chosen as the center
for the next regression. The regression and line search process
repeats until the search stops making acceptable progress.

VI. RESULTS

Preliminary results for ANM have been gathered using
MilkyWay@Home. They were evaluated using data from the
Sloan Digital Sky Survey [8]. A model for one tidal stream
of the Sagittarius dwarf galaxy disruption within those stripes
and the background distribution of stars in the Milky Way
Galaxy were fit to the observed data. The model has 8 different
parameters used in the optimization and the data sets consisted
of 92,000 to 112,000 stars. For each iteration of ANM, 1000
points each were used to calculate the regression and to
perform the randomized line search. As volunteers requested
work, more points for evaluation would be sent out until 1000
results had been received.

Figure 2 shows the progress of two ANM searches for
stripe 79 and 86, started from randomly selected points close
to the global optima. Stripe 79 converges to a optima quite
quickly, in 5 iterations. Stripe 82 takes longer, converging
within 20 iterations. This corresponds to 10,000 and 40,000
function evaluations, respectively. Optimization of stripes 79
and 86 have been studied significantly in previous work [9],



Fig. 3. Examples of the randomized line search breaking out of local optima.

[10], [11] and starting from similar positions take hundreds
of iterations to converge to the global optimum with similar
accuracy using conjugate gradient descent. While they may
take less overall function evaluations to find a solution than
ANM, they have significantly less parallelism – in this case 16
function evaluations could be done concurrently to calculate
the gradient, while the line search has no parallelism at all.
Because of this, ANM can have significantly less time to
solution given enough volunteers.

A further benefit from this approach is that the randomized
line search has the potential to break out of local optima.
Figure 3 demonstrates this with a figure of the points evaluated
during line searches for stripe 79 and 82. They demonstrate
that while the regression did pick a direction which corre-
sponds to the overall gradient of the line search, using a
traditional line search would not pick the overall best point, as
they would start at 0 and only move to the nearest best point.
This has the potential to even further decrease the number
of iterations the Newton method takes to reach the nearest
optimum.

VII. CONCLUSIONS

Traditionally, using the standard Newton method in opti-
mization has been avoided due to the excessive number of
function evaluations it requires to calculate a search direction.
However an asynchronous variation of the Newton method

using regression can take advantage of the massive amounts
of parallelism provided by volunteer computing systems. This
asynchronous implementation is extremely scalable and re-
silient to faulty and unreliable nodes. It also has the additional
advantage of being able to break out of local optima using
a randomized line search. Preliminary results show that this
method has the potential to converge to a local optimum in
significantly fewer iterations than conjugate gradient descent,
which can drastically reduce the time to solution when using
a large enough computing system.

This work opens up many avenues for future research. It
may be possible to further reduce the time to solution by
using Wolfe conditions to do an inexact line search [5] or by
using the error values from the regression to further refine the
range of the randomized line search. It may also be possible
to reduce the time to find a global optimum by initially using
various asynchronous evolutionary algorithms [10] to come
close to the global optimum and then utilize ANM to refine
the accuracy of the final value. Further analysis of ANM may
even show that it can compare to asynchronous evolutionary
algorithms in finding a global optimum due to the randomized
line search being able to escape local optima. As such, we feel
that this is a promising method warranting deeper study.

ACKNOWLEDGMENTS

The authors would like to thank all the volunteers at
MilkyWay@Home and DNA@Home who have made this
work possible. This work has been partially supported by the
NSF under Grants No. 0612213, 0947637, and 10-09670.

REFERENCES

[1] T. Desell, D. Anderson, M. Magdon-Ismail, B. S. Heidi Newberg,
and C. Varela, “An analysis of massively distributed evolutionary algo-
rithms,” in The 2010 IEEE congress on evolutionary computation (IEEE

CEC 2010), Barcelona, Spain, July 2010.
[2] D. P. Anderson, E. Korpela, and R. Walton, “High-performance task

distribution for volunteer computing.” in e-Science. IEEE Computer
Society, 2005, pp. 196–203.

[3] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for
solving linear systems,” Journal of Research of the National Bureau of

Standards, vol. 49, no. 6, December 1952.
[4] J. Bonnans, J. Gilbert, C. Lemarechal, and C. A. Sagastizabal, Numerical

optimization, theoretical and numerical aspects. Springer, 2006.
[5] J. Nocedal and S. Wright, Numerical Optimization. New York, NY:

Springer Verlag, 1999.
[6] R. P. Brent, Algorithms for Minimization without Derivatives. Engle-

wood Cliffs, NJ: Prentice-Hall, 1973.
[7] T. Desell, M. Magdon-Ismail, B. Szymanski, C. Varela, H. Newberg,

and D. Anderson, “Validating evolutionary algorithms on volunteer
computing grids,” in The 10th IFIP international conference on dis-

tributed applications and interoperable systems (DAIS). Amsterdam,
Netherlands: Springer-Verlag, June 2010.

[8] J. e. a. Adelman-McCarthy, “The 6th Sloan Digital Sky Survey
Data Release, http://www.sdss.org/dr6/,” July 2007, apJS, in press,
arXiv/0707.3413.

[9] T. Desell, N. Cole, M. Magdon-Ismail, H. Newberg, B. Szymanski, and
C. Varela, “Distributed and generic maximum likelihood evaluation,” in
3rd IEEE International Conference on e-Science and Grid Computing

(eScience2007), Bangalore, India, December 2007, pp. 337–344.
[10] T. Desell, “Asynchronous global optimization for massive scale comput-

ing,” Ph.D. dissertation, Rensselaer Polytechnic Institute, 2009.
[11] N. Cole, “Maximum likelihood fitting of tidal streams with application

to the sagittarius dwarf tidal tails,” Ph.D. dissertation, Rensselaer Poly-
technic Institute, 2009.


