
Java Threads &
Concurrency

All material not from online sources/textbook copyright © Travis Desell, 2012

Online Reference

• http://docs.oracle.com/javase/tutorial/
essential/concurrency/

http://docs.oracle.com/javase/tutorial/essential/concurrency/

Threads

• Threads are Objects too!	

• http://docs.oracle.com/javase/7/docs/api/java/lang/
Thread.html	

• You can also use Executors, but more on those
later.

Thread Objects

• Thread has an empty run() method, you can
override it	

• Starting the thread will run the run() method
and immediately return -- it does not block like
other methods

public class HelloThread extends Thread {!
!
 public void run() {!
 System.out.println("Hello from a thread!");!
 }!
!
 public static void main(String args[]) {!
 (new HelloThread()).start();!
 }!
!
}

The Runnable Interface

• Similar to a Thread object, except an interface	

• Use it to create new threads that need to extend
another class

public class HelloRunnable implements Runnable {!
!
 public void run() {!
 System.out.println("Hello from a thread!");!
 }!
!
 public static void main(String args[]) {!
 (new Thread(new HelloRunnable())).start();!
 }!
!
}

Pausing a Thread

• The sleep method pauses a thread for (roughly -- OS dependent) that many
milliseconds	

• If another thread interrupts a sleeping thread, the sleep method will throw an
InterruptedException

public class SleepMessages {!
 public static void main(String args[]) throws InterruptedException {!
 String importantInfo[] = {!
 "Mares eat oats",!
 "Does eat oats",!
 "Little lambs eat ivy",!
 "A kid will eat ivy too"!
 };!
!
 for (int i = 0; i < importantInfo.length; i++) {!
 //Pause for 4 seconds!
 Thread.sleep(4000);!
 //Print a message!
 System.out.println(importantInfo[i]);!
 }!
 }!
}

Interrupting a Thread

• Will print a message every four seconds until
interrupted or there are no more messages

for (int i = 0; i < importantInfo.length; i++) {!
 //Pause for 4 seconds!
 try {!
 Thread.sleep(4000);!
 } catch (InterruptedException e) {!
 //We've been interrupted: no more messages.!
 return;!
 }!
 //Print a message!
 System.out.println(importantInfo[i]);!
}

Interrupting a Thread 2

• What if your methods don’t throw InterruptedException?	

• Thread.interrupted() returns true if the current thread has been
interrupted. A subsequent call to Thread.interrupted() will return
false unless the thread was interrupted again.	

• It may be better to throw a new InterruptedException instead of
returning.

for (int i = 0; i < inputs.length; i++) {!
 heavyCrunch(inputs[i]);!
 if (Thread.interrupted()) {!
 //We've been interrupted: no more crunching.!
 return;!
 }!
}

“Joining” a Thread

•t.join(); will wait for the thread t to
complete	

•t.join(millis); will wait at most millis
ms (again roughly) for t to complete	

•if interrupted, will throw an
InterruptedException

Synchronization

• Threads communicate by sharing access to
fields and methods of objects they
reference	

!

• This can lead to some big problems

Thread Interference

the c++ statement:	

retrieve c	

increment c	

store value	

the c-- statement:	

retrieve c	

decrement c	

store value

class Counter {!
 private int c = 0;!
!
 public void increment() { c++; }!
 public void decrement() { c--; }!
!
 public int value() {!
 return c;!
 }!
}

Thread Interference 2

What if two threads use the same Counter?	

Thread A calls increment, Thread B calls decrement	

1. Thread A: retrieve c (A’s c == 0)	

2. Thread B: retrieve c (B’s c == 0)	

3. Thread A: increment c (A’s c = 1)	

4. Thread B: decrement c (B’s c = -1)	

5. Thread A: store c (stores 1)	

6.Thread B: store c (stores -1)

Thread Interference 3

• What went wrong?	

• Performing operations on the same
memory with multiple threads at the same
time can cause some very nasty bugs

Memory Consistency

 Thread A and B share a reference to counter:	

!

int counter = 0;!
!
 Thread A increments counter:	

!

counter++;!
!
 After, B prints out counter:	

!

System.out.println(counter);!
!
B may print out 0!	

Due to Threading implementations and hardware, A and B may not necessarily be
working on the same memory.

Happens-Before

Happens-Before relationships guarantee some
statements happen before others	

Thread.join() and Thread.start() are
two examples	

More Reading:	

http://java.sun.com/javase/7/docs/api/java/util/
concurrent/package-summary.html#MemoryVisibility

http://java.sun.com/javase/7/docs/api/java/util/concurrent/package-summary.html#

Synchronized Methods

• It is not possible for threads to interleave/interfere on a synchronized method
-- only one thread may be executing the code synchronized on an object at a
time, others will wait	

• Synchronized methods establish happens-before relationships on subsequent
method invocations	

• Having a synchronized method is like wrapping a mutex around the method.	

• Constructors cannot be synchronized -- so be careful

public class SynchronizedCounter {!
 private int c = 0;!
!
 public synchronized void increment() { c++; }!
 public synchronized void decrement() { c--; }!
!
 public synchronized int value() {!
 return c;!
 }!
}!

Synchronized Blocks

• Will only synchronize the block on this

public void addName(String name) {!
 synchronized(name) {!
 lastName = name;!
 nameCount++;!
 }!
 nameList.add(name);!
}

Synchronized Blocks 2

• Allows fine grained synchronization	

• Be careful: if c1 and c2 were objects that shared
references to other objects, they could interleave
in other methods

public class MsLunch {!
 private long c1 = 0, c2 = 0;!
 private Object lock1 = new Object();!
 private Object lock2 = new Object();!
 public void inc1() {!
 synchronized(lock1) { c1++; }!
 }!
 public void inc2() {!
 synchronized(lock2) { c2++; }!
 }!
}

Reentrant
Synchronization

• Using synchronized gives threads a lock on a
section of code	

• A thread cannot execute code another thread has
a lock on	

• A thread can get a lock on code it already has a
lock on, this is reentrant synchronization	

• Without this, it would be much easier to create
deadlock (ex., a synchronized method calls itself)

Atomic Accesses
• An atomic action happens all at once (therefore

they can’t interleave)	

• Reads and write for reference variables and
primitive (except long and double) are atomic	

• variables declared volatile also have atomic
read and write (even long or double)	

• writing to a volatile variable also sets up
happens-before dependencies to subsequent reads
of that variable

Liveness

• A concurrent applications ability to execute
in a timely manner (or at all) is its ‘liveness’	

!

• Deadlock, starvation and livelock are
concurrent programming issues which
prevent liveness

Deadlock
public class Deadlock {!
 static class Friend {!
 private final String name;!
 public Friend(String name) { this.name = name; }!
 public String getName() { return this.name; }!
!
 public synchronized void bow(Friend bower) {!
 System.out.format("%s: %s has bowed to me!%n", this.name, bower.getName());!
 bower.bowBack(this);!
 }!
 public synchronized void bowBack(Friend bower) {!
 System.out.format("%s: %s has bowed back to me!%n", this.name, bower.getName());!
 }!
 }!
!
 public static void main(String[] args) {!
 final Friend alphonse = new Friend("Alphonse");!
 final Friend gaston = new Friend("Gaston");!
 new Thread(new Runnable() {!
 public void run() { alphonse.bow(gaston); }!
 }).start();!
 new Thread(new Runnable() {!
 public void run() { gaston.bow(alphonse); }!
 }).start();!
 }!
}

Deadlock 2

• Deadlock can happen if they both enter bow, then
attempt to invoke bowback on each other.	

• Both have a lock (from bow), and can’t obtain each
others lock

Starvation

• Thread A obtains a lock another Thread B
needs	

• Thread A never releases lock, or computes
for very long amounts of time with lock	

• Thread B cannot progress (or progresses
very slowly)

Livelock

• Threads can act in response to each other (via InterruptedExceptions,
for example)	

• Think of two people trying to pass each other in a hall.	

• Thread A moves left and Thread B moves right (they still block each other)	

• Thread A moves right and Thread B moves left (they still block each other)	

• Both are still active, but neither can progress

Guarded Blocks

• What if you want to wait for a field to be
changed?

public void guardedJoy() {!
 //Simple loop guard. Wastes processor time. Don't do this!!
 while(!joy) {}!
 System.out.println("Joy has been achieved!");!
}

Guarded Blocks 2

• Be careful -- the InterruptedException might not be
the one you were looking for -- put wait in a loop	

• Why is guardedJoy synchronized? Can only call
wait() when there is a lock (wait() releases the lock and
suspends the thread)

public synchronized guardedJoy() {!
 //This guard only loops once for each special event, which may not!
 //be the event we're waiting for.!
 while(!joy) {!
 try {!
 wait();!
 } catch (InterruptedException e) {}!
 }!
 System.out.println("Joy and efficiency have been achieved!");!
}

Guarded Blocks 3

• notifiyAll() notifies all threads waiting on a
lock (and the scheduler decides which will get it
next)	

• notify() only notifies a single thread

public synchronized notifyJoy() {!
 joy = true;!
 notifyAll();!
}

Immutable Objects

• Immutable objects are objects that cannot
change their state	

• Very useful in concurrent programming --
since they cannot change state they cannot
suffer from thread interference or have an
inconsistent state

Immutable Objects 2

• It’s easy to make an object immutable in Java	

• make all fields final (they can’t be modified) and
private (they can’t be accessed)	

• instantiate all fields within the constructor	

• provide get methods for users to access copies of
fields (primitives are naturally call-by-value)

