Java Threads &
Concurrency

All material not from online sources/textbook copyright © Travis Desell, 2012

Online Reference

® http://docs.oracle.com/javase/tutorial/
essential/concurrency/

http://docs.oracle.com/javase/tutorial/essential/concurrency/

Threads

® Threads are Objects too!

® http://docs.oracle.com/javase///docs/api/java/lang/
Thread.html

® You can also use Executors, but more on those
later.

Thread Objects

public class HelloThread extends Thread {

public void run() {
System.out.println("Hello from a thread!");

}

public static void main(String args[]) {
(new HelloThread()).start();

}
}

® Thread has an empty run () method, you can
override it

® Starting the thread will run the run () method
and immediately return -- it does not block like
other methods

The Runnable Interface

public class HelloRunnable implements Runnable {

public void run() {
System.out.println("Hello from a thread!");

}

public static void main(String args[]) {
(new Thread(new HelloRunnable())).start();

}

® Similar to a Thread object, except an interface

® Use it to create new threads that need to extend
another class

Pausing a [hread

public class SleepMessages {
public static void main(String args[]) throws InterruptedException {
String importantInfo[] = {
"Mares eat oats",
"Does eat oats",
"Little lambs eat ivy",
"A kid will eat ivy too"

for (int i = 0; i < importantInfo.length; i++) {
//Pause for 4 seconds
Thread.sleep(4000);
//Print a message
System.out.println(importantInfo[i]);

}

® The sleep method pauses a thread for (roughly -- OS dependent) that many
milliseconds

® [f another thread interrupts a sleeping thread, the sleep method will throw an
InterruptedException

Interrupting a [hread

for (int i = 0; i1 < importantInfo.length; i++) {
//Pause for 4 seconds
try {
Thread.sleep(4000);
} catch (InterruptedException e) {
//We've been interrupted: no more messages.
return;
}
//Print a message
System.out.println(importantInfo[i]);

® Will print a message every four seconds until
interrupted or there are no more messages

Interrupting a Thread 2

for (int i = 0; i1 < inputs.length; i++) {
heavyCrunch(inputs[i]);

if (Thread.interrupted()) {
//We've been interrupted: no more crunching.
return;

}

® What if your methods don’t throw InterruptedException!

® Thread.interrupted() returns true if the current thread has been

interrupted. A subsequent call to Thread.interrupted() will return
false unless the thread was interrupted again.

® |t may be better to throw a new InterruptedException instead of
returning.

“Joining”” a Thread

® t.join () ; will wait for the thread t to
complete

®t.join(millis); willwaitatmostmillis
ms (again roughly) for t to complete

® if interrupted, will throw an
InterruptedException

Synchronization

® Threads communicate by sharing access to
fields and methods of objects they
reference

® This can lead to some big problems

Thread Interference

class Counter {
private int c = 0;

public void increment() { c++; }
public void decrement() { c--; }

public int value() {

return c;
}
}
the c++ statement: the c—- statement:
retrieve C retrieve C
Increment C decrement ¢

store value store value

Thread Interference 2

What if two threads use the same Counter?!

Thread A calls increment, Thread B calls decrement
|. Thread A: retrieve c (A’s ¢ == 0)
2. Thread B: retrieve c (B's ¢ == 0)
3. Thread A:increment c (A’s c = |)
4. Thread B: decrement c (B’s c = -1)
5. Thread A: store c (stores |)

6.Thread B: store c (stores -1)

Thread Interference 3

® What went wrong!

® Performing operations on the same
memory with multiple threads at the same
time can cause some very nasty bugs

Memory Consistency

Thread A and B share a reference to counter:
int counter = 0;

Thread A increments counter:
counter++;

After, B prints out counter:
System.out.println(counter);

B may print out 0!

Due to Threading implementations and hardware, A and B may not necessarily be
working on the same memory.

Happens-Before

Happens-Before relationships guarantee some
statements happen before others

Thread.join() and Thread.start () are
two examples

More Reading:

http://java.sun.com/javase///docs/api/java/util/
concurrent/package-summary.html#MemoryVisibility

http://java.sun.com/javase/7/docs/api/java/util/concurrent/package-summary.html#

Synchronized Methods

public class SynchronizedCounter ({

private int c = 0;
public synchronized void increment() { c++; }
public synchronized void decrement() { c--; }
public synchronized int value() {

return c;
}

® [t is not possible for threads to interleave/interfere on a synchronized method
-- only one thread may be executing the code synchronized on an object at a
time, others will wait

® Synchronized methods establish happens-before relationships on subsequent
method invocations

® Having a synchronized method is like wrapping a mutex around the method.

® Constructors cannot be synchronized -- so be careful

Synchronized Blocks

public void addName(String name) {
synchronized(name) {
lastName = name;
nameCount++;

}

nameList.add(name);

}

® Will only synchronize the block on this

Synchronized Blocks 2

public class MsLunch {
private long cl = 0, c2 = 0;
private Object 1lockl new Object();
private Object lock2 new Object();
public void incl() {
synchronized(lockl) { cl++; }

}
public void inc2() {

synchronized(lock2) { c2++; }
}
}

® Allows fine grained synchronization

® Be careful:if cl and c2 were objects that shared

references to other objects, they could interleave
in other methods

Reentrant
Synchronization

Using synchronized gives threads a lock on a
section of code

A thread cannot execute code another thread has
a lock on

A thread can get a lock on code it already has a
lock on, this is reentrant synchronization

Without this, it would be much easier to create
deadlock (ex., a synchronized method calls itself)

Atomic Accesses

An atomic action happens all at once (therefore
they can’t interleave)

Reads and write for reference variables and
primitive (except 1ong and double) are atomic

variables declared volatile also have atomic
read and write (even 1long or double)

writing to a volatile variable also sets up
happens-before dependencies to subsequent reads
of that variable

L iveness

® A concurrent applications ability to execute
in a timely manner (or at all) is its ‘liveness’

® Deadlock, starvation and livelock are
concurrent programming issues which
prevent liveness

Deadlock

public class Deadlock {
static class Friend {
private final String name;
public Friend(String name) { this.name = name; }
public String getName() { return this.name; }

public synchronized void bow(Friend bower) {

System.out.format("%$s: %s has bowed to me!%n", this.name, bower.getName());
bower .bowBack(this);

}

public synchronized void bowBack(Friend bower) {
System.out.format("%$s: %s has bowed back to me!%n", this.name, bower.getName());

}

public static void main(String[] args) {
final Friend alphonse = new Friend("Alphonse");
final Friend gaston = new Friend("Gaston");

new Thread(new Runnable() {

public void run() { alphonse.bow(gaston); }
}).start();
new Thread(new Runnable() {

public void run() { gaston.bow(alphonse); }

}).start();

Deadlock 2

® Deadlock can happen if they both enter bow, then
attempt to invoke bowback on each other.

® Both have a lock (from bow), and can’t obtain each
others lock

Starvation

® [hread A obtains a lock another Thread B
needs

® Thread A never releases lock, or computes
for very long amounts of time with lock

® Thread B cannot progress (or progresses
very slowly)

Livelock

Threads can act in response to each other (via InterruptedExceptions,
for example)

Think of two people trying to pass each other in a hall.
Thread A moves left and Thread B moves right (they still block each other)
Thread A moves right and Thread B moves left (they still block each other)

Both are still active, but neither can progress

Guarded Blocks

public void guardeddoy() {
//Simple loop guard. Wastes processor time. Don't do this!
while(!joy) {}
System.out.println("Joy has been achieved!");

® What if you want to wait for a field to be
changed!?

Guarded Blocks 2

public synchronized guardedJoy() {

//This guard only loops once for each special event, which may not
//be the event we're waiting for.

while(!joy) {

try {
wait();

} catch (InterruptedException e) {}
}

System.out.println("Joy and efficiency have been achieved!");

14

® Be careful -- the InterruptedException might not be
the one you were looking for -- put wait in a loop
® Why is guardedJoy synchronized?! Can only call

wait () when there is a lock (wait () releases the lock and
suspends the thread)

Guarded Blocks 3

public synchronized notifyJoy() {
joy = true;
notifyAll();

}

® notifiyAll () notifies all threads waiting on a
lock (and the scheduler decides which will get it
next)

® notify () only notifies a single thread

Immutable Objects

® |mmutable objects are objects that cannot
change their state

® Very useful in concurrent programming --
since they cannot change state they cannot
suffer from thread interference or have an
Inconsistent state

Immutable Objects 2

It's easy to make an object immutable in Java

make all fields £inal (they can’t be modified) and
private (they can’t be accessed)

instantiate all fields within the constructor

provide get methods for users to access copies of
fields (primitives are naturally call-by-value)

