
CS445: Modeling
Complex Systems	

!

!

Travis Desell	

!

Averill M. Law, Simulation Modeling & Analysis, Chapter 2

Time-Shared Computer
Model

Time Shared Computer Model

A company (or university) has a computer system consisting of a single central
processing unit (CPU) and n terminals. This was a standard model for old
mainframes, but is still applicable currently, as it is very similar as to how multiple
processes are executed on a CPU by an operating system, or how multiple users
utilize a supercomputer or high performance computing cluster.

Job 1
2

1

n

Terminals

Job 2 Active
Job

. . .

.	

.	

. Queue

CPU

Unfinished Jobs

Computer

Time Shared Computer Model

The operator of each terminal will “think” for awhile (the time is an exponential
random variable with mean 25 seconds) and then sends to the CPU a job having
service time exponentially distributed with mean 0.8 seconds.

Job 1
2

1

n

Terminals

Job 2 Active
Job

. . .

.	

.	

. Queue

CPU

Unfinished Jobs

Computer

Time Shared Computer Model

The jobs arriving at the CPU join a single queue but are served in a round robin
fashion instead of a FIFO manner. The CPU allocates each job a time slice or quantum
of length q = 0.1 second. If you have taken Operating Systems this should be familiar.
Each job is processed for its quantum, and if it is not finished by the end of the
quantum, it is placed back into the queue.

Job 1
2

1

n

Terminals

Job 2 Active
Job

. . .

.	

.	

. Queue

CPU

Unfinished Jobs

Computer

Time Shared Computer Model

The model can be described with three events, given a minimized event-graph.	

!
There are n initial arrival events, one per terminal. This will put the event into the
queue or start a CPU run if there are no jobs being run.	

!
The CPU run event will process a time slice, which will either start another arrival
event after the thinking time if the job completes, or start another CPU run event
when the next time slice has ended.	

!
When the specified number of jobs have completed, this will generate an end
simulation event.

Arrival CPU Run End
Simulation.	

.	

.

1

2

n

Time Shared Computer Model

Let Ri be the response time of the ith job to finish service. This is defined as the
time elapsing between the instant the job leaves its terminal and the instant it is
finished being processed by the CPU. We can vary the number of terminals n to
evaluate a variety of information about the simulation.	

!
Given a number of job completions (1000):	

!
1. What is the expected average response time for a job? (continuous time statistic)	

2. What is the time average number of jobs waiting in the queue? (discrete time
statistic)	

3. What is the utilization of the CPU? (continuous time statistic)	

!
It is also possible to answer questions such as:	

1. Given n users, how many terminals can it have on the system and still provide
users with an average response time of no more than 30 seconds?

Required Data Structures

This simulation just requires one queue (probably implemented as a linked list), to hold the jobs
being processed by the CPU. It will need to have a method to push to the end of the queue, and
pop the front of the queue.	

!
c++’s queue has push_back and pop_front: http://www.cplusplus.com/reference/queue/queue/

http://www.cplusplus.com/reference/queue/queue/

Multi-Teller Bank with
Jockeying

Time Shared Computer Model

A company (or university) has a computer system consisting of a single central
processing unit (CPU) and n terminals. This was a standard model for old
mainframes, but is still applicable currently, as it is very similar as to how multiple
processes are executed on a CPU by an operating system, or how multiple users
utilize a supercomputer or high performance computing cluster.

Client

21Tellers

Client

Computer

3 54

Client Client Client

Client

Client

Client

Multiteller Bank with Jockeying

Another common situation worth simulating is a multiteller bank with jockeying.	

!
A bank with N tellers (in our case 5) opens at 9am and closes at 5pm but operates
until all customers in the bank by 5pm have been served. Customers arrive
determined by an IID (independent and identically distributed) exponential random
variable with mean 1 minute. Customers are serviced with time IID exponential
random with mean 4.5 minutes.

Client

21Tellers

Client

Computer

3 54

Client Client Client

Client

Client

Client

Multiteller Bank with Jockeying

Each teller has their own separate queue. When a customer arrives, they will
choose the leftmost shortest queue to enter.

Client

21Tellers

Client

Computer

3 54

Client Client Client

Client

Client

Client

Multiteller Bank with Jockeying

Clients process their queues in order, however if a customer could move up by going
into another line, they will.

Client

21Tellers

Client

Computer

3 54

Client Client

Client

Client

Client

Multiteller Bank with Jockeying

Clients process their queues in order, however if a customer could move up by going
into another line, they will.

Client

21Tellers

Client

Computer

3 54

Client Client

Client

Client

Client

Client

Multiteller Bank with Jockeying

Clients process their queues in order, however if a customer could move up by going
into another line, they will.

Client

21Tellers

Client

Computer

3 54

Client ClientClient

Client

Client

Multiteller Bank with Jockeying

The rule is formalized: If the completion of service at a teller i causes nj > ni + 1 for
some other teller j, then the customer from the tail of queue j jockeys to the tail of
queue i. If there are two or more such customers, the one from the closest, leftmost
queue jockeys. If teller i is idle, the customer begins service at teller i.

Client

21Tellers

Client

Computer

3 54

Client ClientClient

Client

Client

Multiteller Bank with Jockeying

Some example questions that can be analyzed with this simulation are (given a
number of tellers, n):	

!
1. What is the estimated time-average total number of customers in the queue?	

2. What is the expected average delay in the queue?	

3. What’s the expected maximum delay in the queue?	

!
Bonus: What’s the expected average time after 5pm that the bank closes? Note, to
calculate this many day-long simulations will need to be run.

Client

21Tellers

Client

Computer

3 54

Client ClientClient

Client

Client

Multiteller Bank with Jockeying

We can specify this simulation with another simple event graph. In fact, it’s identical to the event
graph for the M/M/1 queue.	

!
There are three events:	

1. Arrival of a customer. This will handle scheduling the customer to a teller, and also generate the
next customer arrival.	

2. Departure of a customer. This will move the next customer up in line (if there is one) and
perform the jockeying. This will also schedule the departure of any customer (the next in line or a
jockeyed customer) if they are moved to the front of the line.	

3. Closing of the doors at 5, which prevents any further arrivals. The simulation ends when there
are no events left.

Arrival Departure

Close
Doors

Required Data Structures

A queue is required for each teller (which can be implemented in a queue). This queue will hold
the customers in line and the customer being served for that teller. You don’t need as many
queues as the book specifies (2n+1), if you implement things using events and classes given the in
class assignment code.

Job Shop Model

Job Shop Model

The Job Shop model is another even more complicated
model, simulating jobs as they move through a shop.

Job Job

Job JobJob

Job

Job

Job

Job

Job JobJob

Job

queue

queue

jobs being	

processed

Station 1

Station 4

jobs being	

processed

jobs being	

processed

Station 3

Station 2

jobs being	

processed

Station 5

type 1 job

Job Shop Model

There are multiple types of jobs, each which visit each
station in a different order.	

Type 1: stations 3 1 2 5
Type 2: stations 4 1 3	

Type 3: stations 2 5 1 4 3

Job Job

Job JobJob

Job

Job

Job

Job

Job JobJob

Job

queue

queue

jobs being	

processed

Station 1

Station 4

jobs being	

processed

jobs being	

processed

Station 3

Station 2

jobs being	

processed

Station 5

type 1 job

Job Shop Model

There are multiple types of jobs, each which visit each
station in a different order.	

Type 1: stations 3 1 2 5	

Type 2: stations 4 1 3
Type 3: stations 2 5 1 4 3

Job Job

Job JobJob

Job

Job

Job

Job

Job JobJob

Job

queue

queue

jobs being	

processed

Station 1

Station 4

jobs being	

processed

jobs being	

processed

Station 3

Station 2

jobs being	

processed

Station 5

type 2 job

Job Shop Model

There are multiple types of jobs, each which visit each
station in a different order.	

Type 1: stations 3 1 2 5	

Type 2: stations 4 1 3	

Type 3: stations 2 5 1 4 3

Job Job

Job JobJob

Job

Job

Job

Job

Job JobJob

Job

queue

queue

jobs being	

processed

Station 1

Station 4

jobs being	

processed

jobs being	

processed

Station 3

Station 2

jobs being	

processed

Station 5

type 3 job

Job Shop Model

Jobs arrive at the job shop with inter arrival time IID
exponential random with mean 0.25 hours. There are
the three types of jobs, with respective probabilities 0.3,
0.5 and 0.2

Job Job

Job JobJob

Job

Job

Job

Job

Job JobJob

Job

queue

queue

jobs being	

processed

Station 1

Station 4

jobs being	

processed

jobs being	

processed

Station 3

Station 2

jobs being	

processed

Station 5

type 3 job

Job Shop Model

Each station has a number of machines. Station 1 has 3, station 2
has 2, station 3 has 4, station 4 has 3 and station 5 has 1.	

!
If a job arrives at a station it will enter a FIFO queue if the first
machine in the station is in use. If not, it will start on the first
machine and progress successively through them.

Job

1 2 3 4

Job

Job

1 2 3

JobJob

Job

Job

Job

1 2

Job

1

Job

1 2 3

JobJob

Job

queue

queue

jobs being	

processed

Station 1

Station 4

jobs being	

processed

jobs being	

processed

Station 3

Station 2

jobs being	

processed

Station 5

type 3 job

Job Shop Model

Here, the time to perform a task at a particular machine is generated
with an IID 2-Erlang random variable, as this type of random variable
has been shown to match data collected for this type of waiting. It was
originally discovered by Erlang who gathered data to determine the
number of telephone calls that might occur at the same time to
operators of phone switching stations (see http://en.wikipedia.org/
wiki/Erlang_distribution).

Job

1 2 3 4

Job

Job

1 2 3

JobJob

Job

Job

Job

1 2

Job

1

Job

1 2 3

JobJob

Job

queue

queue

jobs being	

processed

Station 1

Station 4

jobs being	

processed

jobs being	

processed

Station 3

Station 2

jobs being	

processed

Station 5

type 3 job

http://en.wikipedia.org/wiki/Erlang_distribution

Job Shop Model

A 2-Erlang random variable with mean r can be calculated X = Y1 + Y2,
where Y1 and Y2 are IID exponential random variables with mean r/2,
alternately, X is known as a gamma random variable with shape
parameter 2 and scale parameter r/2.

Job

1 2 3 4

Job

Job

1 2 3

JobJob

Job

Job

Job

1 2

Job

1

Job

1 2 3

JobJob

Job

queue

queue

jobs being	

processed

Station 1

Station 4

jobs being	

processed

jobs being	

processed

Station 3

Station 2

jobs being	

processed

Station 5

type 3 job

Job Shop Model

A 2-Erlang random variable with mean r can be calculated X = Y1 + Y2,
where Y1 and Y2 are IID exponential random variables with mean r/2,
alternately, X is known as a gamma random variable with shape
parameter 2 and scale parameter r/2.

Job

1 2 3 4

Job

Job

1 2 3

JobJob

Job

Job

Job

1 2

Job

1

Job

1 2 3

JobJob

Job

queue

queue

jobs being	

processed

Station 1

Station 4

jobs being	

processed

jobs being	

processed

Station 3

Station 2

jobs being	

processed

Station 5

type 3 job

Job Shop Model

Each machine has a service time (in hours) generated with the 2-
Erlang random variable:	

	

 Station 1: 0.50, 0.60, 0.85, 0.50	

	

 Station 2: 1.10, 0.80, 0.75	

	

 Station 3: 1.20, 0.25, 0.70, 0.90, 1.00	

And a job must pass through all stations to move on to the next
station.

Job

1 2 3 4

Job

Job

1 2 3

JobJob

Job

Job

Job

1 2

Job

1

Job

1 2 3

JobJob

Job

queue

queue

jobs being	

processed

Station 1

Station 4

jobs being	

processed

jobs being	

processed

Station 3

Station 2

jobs being	

processed

Station 5

type 3 job

Job Shop Model

Each machine has a service time (in hours) generated with the 2-
Erlang random variable:	

	

 Station 1: 0.50, 0.60, 0.85, 0.50	

	

 Station 2: 1.10, 0.80, 0.75	

	

 Station 3: 1.20, 0.25, 0.70, 0.90, 1.00	

And a job must pass through all stations to move on to the next
station.

Job

1 2 3 4

Job

Job

1 2 3

JobJob

Job

Job

Job

1 2

Job

1

Job

1 2 3

JobJob

Job

queue

queue

jobs being	

processed

Station 1

Station 4

jobs being	

processed

jobs being	

processed

Station 3

Station 2

jobs being	

processed

Station 5

type 3 job

Job Shop Model

Using this simulation, we can determine things like:	

1. The average expected number in the queue for each station.	

2. The expected utilization of each station.	

3.The expected average delay in queue for each station.	

We could then use this information and simulation to determine
which machines to purchase given a certain amount of money to best
increase production, etc.

Job

1 2 3 4

Job

Job

1 2 3

JobJob

Job

Job

Job

1 2

Job

1

Job

1 2 3

JobJob

Job

queue

queue

jobs being	

processed

Station 1

Station 4

jobs being	

processed

jobs being	

processed

Station 3

Station 2

jobs being	

processed

Station 5

type 3 job

Job Shop Model

The event graph again looks similar!	

!
There are three events:	

1. Arrival of a job to the system. This will handle scheduling the job to its given first station, and
also generate the next job arrival.	

2. Departure of a job from a station. This will move the next job up in the FIFO queue (if there is
one) and start processing of then next job at the station. This will also put the job in the next
stations queue, or schedule it’s departure.	

3. Ending of the simulation.

arrival of
Job

departure
from

station

End
simulation

Required Data Structures

For this, a queue is required at each station, to hold the jobs being processed. When a job starts
being processed we can calculate the time for the next one to begin processing, moving things
through the machines. We will also need data structures for each station, and the machines within
it to keep track of what is where.

Conclusions

Conclusions

This lecture went over various more complicated simulations, to get an idea of how these can be
described. Interestingly, they all can boil down to quite simple event graphs, however the actions of
each event get progressively more complex. You’ll have to implement one of these for your next
assignment.

